From f07aa8339d82c98f59f12fc75ea08b2b02bd7354 Mon Sep 17 00:00:00 2001 From: Helmut Grohne Date: Sat, 12 Jan 2013 17:05:39 +0100 Subject: introduce a proper view on checkInsert Thanks to Joachim Breitner for helping me to work out the definition of InsertionResult and to Daniel Seidel for helping me understand what makes a view. --- Bidir.agda | 38 ++++++++++++-------------------------- 1 file changed, 12 insertions(+), 26 deletions(-) (limited to 'Bidir.agda') diff --git a/Bidir.agda b/Bidir.agda index 3dbdbdd..357c999 100644 --- a/Bidir.agda +++ b/Bidir.agda @@ -40,21 +40,10 @@ lemma-1 f (i ∷ is′) = begin lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x lemma-lookupM-assoc i is x xs h p with assoc is xs lemma-lookupM-assoc i is x xs h () | nothing -lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof i x h' record - { same = λ lookupM≡justx → begin - lookupM i h - ≡⟨ cong (lookupM i) (just-injective (trans (sym p) (lemma-checkInsert-same i x h' lookupM≡justx))) ⟩ - lookupM i h' - ≡⟨ lookupM≡justx ⟩ - just x ∎ - ; new = λ lookupM≡nothing → begin - lookupM i h - ≡⟨ cong (lookupM i) (just-injective (trans (sym p) (lemma-checkInsert-new i x h' lookupM≡nothing))) ⟩ - lookupM i (insert i x h') - ≡⟨ lemma-lookupM-insert i x h' ⟩ - just x ∎ - ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong i x h' x' x≢x' lookupM≡justx')) - } +lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h' +lemma-lookupM-assoc i is x xs .h refl | just h | ._ | insert-same pl = pl +lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | insert-new _ = lemma-lookupM-insert i x h' +lemma-lookupM-assoc i is x xs h () | just h' | ._ | insert-wrong _ _ _ lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing lemma-∉-lookupM-assoc i [] [] .empty refl i∉is = lemma-lookupM-empty i @@ -74,17 +63,14 @@ lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier lemma-assoc-domain [] [] h ph = Data.List.All.[] lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs' lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ] -lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record { - same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (just-injective (trans (sym ph) (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x')) - (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')) ph))) - ; new = λ lookupM-i'-h'≡nothing → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (just-injective (trans (sym ph) (lemma-checkInsert-new i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h'))) - (Data.List.All.map - (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' h (proj₂ p) ph) - (lemma-assoc-domain is' xs' h' ph')) - ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) - } +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h' +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | insert-same pl = All._∷_ (x' , pl) (lemma-assoc-domain is' xs' h ph') +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | insert-new _ = All._∷_ + (x' , lemma-lookupM-insert i' x' h') + (Data.List.All.map + (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡) + (lemma-assoc-domain is' xs' h' ph')) +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | insert-wrong _ _ _ lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is lemma-map-lookupM-insert i [] x h i∉is = refl -- cgit v1.2.3