From 8546a8812a4fdaf3e3d7a7ba3433894db8b25a14 Mon Sep 17 00:00:00 2001 From: Helmut Grohne Date: Wed, 26 Sep 2012 22:02:48 +0200 Subject: use _\==n_ and _\notin_ instead of \neg Consistent. Shorter. --- CheckInsert.agda | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'CheckInsert.agda') diff --git a/CheckInsert.agda b/CheckInsert.agda index c482423..40a57d6 100644 --- a/CheckInsert.agda +++ b/CheckInsert.agda @@ -5,9 +5,9 @@ open import Data.Fin using (Fin) open import Data.Fin.Props using (_≟_) open import Data.Maybe using (Maybe ; nothing ; just) open import Data.List using (List ; [] ; _∷_) -open import Relation.Nullary using (Dec ; yes ; no ; ¬_) +open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary.Core using (_≡_ ; refl) +open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) @@ -27,7 +27,7 @@ record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) field same : lookupM i m ≡ just x → P new : lookupM i m ≡ nothing → P - wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P + wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → P apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m @@ -46,7 +46,7 @@ lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) lemma-checkInsert-new eq i x m p with lookupM i m lemma-checkInsert-new eq i x m refl | .nothing = refl -lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing +lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → x ≢ x' → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing lemma-checkInsert-wrong eq i x m x' d p with lookupM i m lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x' lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d @@ -56,7 +56,7 @@ record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x field same : lookupM i m ≡ just x → just m ≡ e new : lookupM i m ≡ nothing → just (insert i x m) ≡ e - wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e + wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e) lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record -- cgit v1.2.3