module BFF where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) import Level import Category.Monad import Category.Functor open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.List using (List ; [] ; _∷_ ; map ; length) open import Data.Vec using (Vec ; toList ; fromList ; tabulate ; allFin) renaming (lookup to lookupV ; map to mapV ; [] to []V ; _∷_ to _∷V_) open import Function using (id ; _∘_ ; flip) open import Relation.Binary.Core using (Decidable ; _≡_) open import FinMap import CheckInsert import FreeTheorems module VecBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open FreeTheorems.VecVec public using (get-type) open CheckInsert Carrier deq assoc : {n m : ℕ} → Vec (Fin n) m → Vec Carrier m → Maybe (FinMapMaybe n Carrier) assoc []V []V = just empty assoc (i ∷V is) (b ∷V bs) = (assoc is bs) >>= (checkInsert i b) enumerate : {n : ℕ} → Vec Carrier n → Vec (Fin n) n enumerate _ = tabulate id denumerate : {n : ℕ} → Vec Carrier n → Fin n → Carrier denumerate = flip lookupV bff : {getlen : ℕ → ℕ} → (get-type getlen) → ({n : ℕ} → Vec Carrier n → Vec Carrier (getlen n) → Maybe (Vec Carrier n)) bff get s v = let s′ = enumerate s g = fromFunc (denumerate s) h = assoc (get s′) v h′ = (flip union g) <$> h in (flip mapV s′ ∘ flip lookupV) <$> h′