open import Level using () renaming (zero to ℓ₀) open import Relation.Binary using (DecSetoid) module BFFPlug (A : DecSetoid ℓ₀ ℓ₀) where open import Data.Nat using (ℕ ; _≟_ ; _+_ ; _∸_ ; zero ; suc ; ⌈_/2⌉) open import Data.Nat.Properties using (m+n∸n≡m) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Vec using (Vec) open import Data.Product using (∃ ; _,_) open import Relation.Binary using (module DecSetoid) open import Relation.Binary.PropositionalEquality using (refl ; cong ; subst ; sym ; module ≡-Reasoning) renaming (setoid to PropEq) open import Relation.Nullary using (yes ; no) open import Function using (flip ; id ; _∘_) open import Function.Equality using (_⟶_) open import Function.LeftInverse using (_RightInverseOf_) import BFF import GetTypes import Examples open DecSetoid A using (Carrier) open GetTypes.VecVec public using (Get) open BFF.VecBFF A public bffsameshape : (G : Get) → {n : ℕ} → Vec Carrier n → Vec Carrier (Get.getlen G n) → Maybe (Vec Carrier n) bffsameshape G {n} = bff G n bffplug : (G : Get) → (ℕ → ℕ → Maybe ℕ) → {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (∃ λ l → Vec Carrier l) bffplug G sput {n} {m} s v with sput n m ... | nothing = nothing ... | just l with Get.getlen G l ≟ m ... | no getlenl≢m = nothing bffplug G sput {n} s v | just l | yes refl with bff G l s v ... | nothing = nothing ... | just s′ = just (l , s′) as-Π : {A B : Set} → (f : A → B) → PropEq A ⟶ PropEq B as-Π f = record { _⟨$⟩_ = f; cong = cong f } _SimpleRightInvOf_ : (ℕ → ℕ) → (ℕ → ℕ) → Set f SimpleRightInvOf g = as-Π f RightInverseOf as-Π g bffinv : (G : Get) → (nelteg : ℕ → ℕ) → nelteg SimpleRightInvOf Get.getlen G → {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier (nelteg m)) bffinv G nelteg inv {n} {m} s v = bff G (nelteg m) s (subst (Vec Carrier) (sym (inv m)) v) module InvExamples where open Examples using (reverse' ; drop' ; sieve') reverse-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier m) reverse-put = bffinv reverse' id (λ _ → refl) drop-put : (k : ℕ) → {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier (m + k)) drop-put k = bffinv (drop' k) (flip _+_ k) (flip m+n∸n≡m k) double : ℕ → ℕ double zero = zero double (suc n) = suc (suc (double n)) sieve-inv-len : double SimpleRightInvOf ⌈_/2⌉ sieve-inv-len zero = refl sieve-inv-len (suc zero) = refl sieve-inv-len (suc (suc x)) = cong (suc ∘ suc) (sieve-inv-len x) sieve-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier (double m)) sieve-put = bffinv sieve' double sieve-inv-len