open import Relation.Binary.Core using (Decidable ; _≡_) module Bidir (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) import Level import Category.Monad import Category.Functor open import Data.Maybe using (Maybe ; nothing ; just ; maybe′) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.List using (List) open import Data.List.All using (All) open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; tabulate) renaming (lookup to lookupVec) open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-cong ; map-∘) open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) open import Function using (id ; _∘_ ; flip) open import Relation.Binary.Core using (refl) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans ; cong₂) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) import FreeTheorems open FreeTheorems.VecVec using (get-type ; free-theorem) open import Generic using (just-injective ; map-just-injective ; mapMV ; mapMV-cong ; mapMV-purity) open import FinMap import CheckInsert open CheckInsert Carrier deq import BFF open BFF.VecBFF Carrier deq using (assoc ; enumerate ; denumerate ; bff) lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc is (map f is) ≡ just (restrict f (toList is)) lemma-1 f [] = refl lemma-1 f (i ∷ is′) = begin (assoc is′ (map f is′) >>= checkInsert i (f i)) ≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩ checkInsert i (f i) (restrict f (toList is′)) ≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩ just (restrict f (toList (i ∷ is′))) ∎ lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x lemma-lookupM-assoc i is x xs h p with assoc is xs lemma-lookupM-assoc i is x xs h () | nothing lemma-lookupM-assoc i is x xs h p | just h' with checkInsert i x h' | insertionresult i x h' lemma-lookupM-assoc i is x xs .h refl | just h | ._ | same pl = pl lemma-lookupM-assoc i is x xs ._ refl | just h' | ._ | new _ = lemma-lookupM-insert i x h' lemma-lookupM-assoc i is x xs h () | just h' | ._ | wrong _ _ _ _in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set _in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (toList is) in-domain-of h lemma-assoc-domain [] [] h ph = Data.List.All.[] lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs' lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ] lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] with checkInsert i' x' h' | inspect (checkInsert i' x') h' | insertionresult i' x' h' lemma-assoc-domain (i' ∷ is') (x' ∷ xs') .h refl | just h | [ ph' ] | ._ | _ | same pl = All._∷_ (x' , pl) (lemma-assoc-domain is' xs' h ph') lemma-assoc-domain (i' ∷ is') (x' ∷ xs') ._ refl | just h' | [ ph' ] | ._ | [ cI≡ ] | new _ = All._∷_ (x' , lemma-lookupM-insert i' x' h') (Data.List.All.map (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' (insert i' x' h') (proj₂ p) cI≡) (lemma-assoc-domain is' xs' h' ph')) lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | just h' | [ ph' ] | ._ | _ | wrong _ _ _ lemma-map-lookupM-assoc : {m : ℕ} → (i : Fin m) → (x : Carrier) → (h : FinMapMaybe m Carrier) → (h' : FinMapMaybe m Carrier) → checkInsert i x h' ≡ just h → {n : ℕ} → (js : Vec (Fin m) n) → (toList js) in-domain-of h' → map (flip lookupM h) js ≡ map (flip lookupM h') js lemma-map-lookupM-assoc i x h h' ph [] pj = refl lemma-map-lookupM-assoc i x h h' ph (j ∷ js) (Data.List.All._∷_ (x' , pl) pj) = cong₂ _∷_ (trans (lemma-lookupM-checkInsert j i x' x h' h pl ph) (sym pl)) (lemma-map-lookupM-assoc i x h h' ph js pj) lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → map (flip lookupM h) is ≡ map just v lemma-2 [] [] h p = refl lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin lookupM i h ∷ map (flip lookupM h) is ≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin assoc (i ∷ is) (x ∷ xs) ≡⟨ cong (flip _>>=_ (checkInsert i x)) ir ⟩ checkInsert i x h' ≡⟨ p ⟩ just h ∎) ) ⟩ just x ∷ map (flip lookupM h) is ≡⟨ cong (_∷_ (just x)) (lemma-map-lookupM-assoc i x h h' p is (lemma-assoc-domain is xs h' ir)) ⟩ just x ∷ map (flip lookupM h') is ≡⟨ cong (_∷_ (just x)) (lemma-2 is xs h' ir) ⟩ just x ∷ map just xs ∎ lemma-map-denumerate-enumerate : {m : ℕ} → (as : Vec Carrier m) → map (denumerate as) (enumerate as) ≡ as lemma-map-denumerate-enumerate [] = refl lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin map (flip lookupVec (a ∷ as)) (tabulate Fin.suc) ≡⟨ cong (map (flip lookupVec (a ∷ as))) (tabulate-∘ Fin.suc id) ⟩ map (flip lookupVec (a ∷ as)) (map Fin.suc (tabulate id)) ≡⟨ refl ⟩ map (flip lookupVec (a ∷ as)) (map Fin.suc (enumerate as)) ≡⟨ sym (map-∘ _ _ (enumerate as)) ⟩ map (flip lookupVec (a ∷ as) ∘ Fin.suc) (enumerate as) ≡⟨ refl ⟩ map (denumerate as) (enumerate as) ≡⟨ lemma-map-denumerate-enumerate as ⟩ as ∎) theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get s (get s) ≡ just s theorem-1 get s = begin bff get s (get s) ≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ bff get s (get (map (denumerate s) (enumerate s))) ≡⟨ cong (bff get s) (free-theorem get (denumerate s) (enumerate s)) ⟩ bff get s (map (denumerate s) (get (enumerate s))) ≡⟨ refl ⟩ (h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s)))) ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩ (h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s)))) ≡⟨ refl ⟩ (h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (delete-many (get (enumerate s)) (partialize (fromFunc (denumerate s))))) ≡⟨ cong (h′↦r ∘ just) (lemma-disjoint-union (denumerate s) (get (enumerate s))) ⟩ (h′↦r ∘ just) (partialize (fromFunc (denumerate s))) ≡⟨ refl ⟩ mapMV (flip lookupVec (partialize (fromFunc (denumerate s)))) (enumerate s) ≡⟨ cong (flip mapMV (enumerate s) ∘ flip lookupVec) (lemma-partialize-fromFunc (denumerate s)) ⟩ mapMV (flip lookupVec (fromFunc (Maybe.just ∘ denumerate s))) (enumerate s) ≡⟨ mapMV-cong (lookup∘tabulate (Maybe.just ∘ denumerate s)) (enumerate s) ⟩ mapMV (Maybe.just ∘ denumerate s) (enumerate s) ≡⟨ mapMV-purity (denumerate s) (enumerate s) ⟩ just (map (denumerate s) (enumerate s)) ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩ just s ∎ where h↦h′ = _<$>_ (flip union (delete-many (get (enumerate s)) (partialize (fromFunc (denumerate s))))) h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupVec) lemma-<$>-just : {A B : Set} {f : A → B} {b : B} {ma : Maybe A} → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a lemma-<$>-just {ma = just x} f<$>ma≡just-b = x , refl lemma-<$>-just {ma = nothing} () {- lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMap n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map just (map (flip lookup (union h h')) is) ≡ map (flip lookupM h) is lemma-union-not-used h h' [] p = refl lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin just (lookup i (union h h')) ≡⟨ cong just (lookup∘tabulate (λ j → maybe′ id (lookup j h') (lookupM j h)) i) ⟩ just (maybe′ id (lookup i h') (lookupM i h)) ≡⟨ cong just (cong (maybe′ id (lookup i h')) px) ⟩ just (maybe′ id (lookup i h') (just x)) ≡⟨ sym px ⟩ lookupM i h ∎) (lemma-union-not-used h h' is' p') theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → get u ≡ v theorem-2 get v s u p with lemma-<$>-just (proj₂ (lemma-<$>-just p)) theorem-2 get v s u p | h , ph = begin get u ≡⟨ just-injective (begin get <$> (just u) ≡⟨ cong (_<$>_ get) (sym p) ⟩ get <$> (bff get s v) ≡⟨ cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ get <$> (h′↦r <$> (h↦h′ <$> just h)) ∎) ⟩ get (map (flip lookup (h↦h′ h)) s′) ≡⟨ free-theorem get (flip lookup (h↦h′ h)) s′ ⟩ map (flip lookup (h↦h′ h)) (get s′) ≡⟨ map-just-injective (begin map just (map (flip lookup (union h g)) (get s′)) ≡⟨ lemma-union-not-used h g (get s′) (lemma-assoc-domain (get s′) v h ph) ⟩ map (flip lookupM h) (get s′) ≡⟨ lemma-2 (get s′) v h ph ⟩ map just v ∎) ⟩ v ∎ where s′ = enumerate s g = fromFunc (denumerate s) h↦h′ = flip union g h′↦r = flip map s′ ∘ flip lookupVec -}