module Bidir where data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true data ℕ : Set where zero : ℕ suc : ℕ → ℕ equal? : ℕ -> ℕ -> Bool equal? zero zero = true equal? (suc n) (suc m) = equal? n m equal? _ _ = false data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A maybeToBool : {A : Set} → Maybe A → Bool maybeToBool nothing = false maybeToBool (just _) = true maybe′ : {A B : Set} → (A → Maybe B) → Maybe B → Maybe A → Maybe B maybe′ y _ (just a) = y a maybe′ _ n nothing = n data _×_ (A B : Set) : Set where _,_ : A → B → A × B data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A _++_ : {A : Set} → List A → List A → List A _++_ [] ys = ys _++_ (x ∷ xs) ys = x ∷ (xs ++ ys) map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs zip : {A B : Set} → List A → List B → List (A × B) zip (a ∷ as) (b ∷ bs) = (a , b) ∷ zip as bs zip _ _ = [] data _==_ {A : Set}(x : A) : A → Set where refl : x == x module NatMap where NatMap : Set → Set NatMap A = List (ℕ × A) lookup : {A : Set} → ℕ → NatMap A → Maybe A lookup n [] = nothing lookup n ((m , a) ∷ xs) with equal? n m lookup n ((m , a) ∷ xs) | true = just a lookup n ((m , a) ∷ xs) | false = lookup n xs notMember : {A : Set} → ℕ → NatMap A → Bool notMember n m = not (maybeToBool (lookup n m)) -- For now we simply prepend the element. This may lead to duplicates. insert : {A : Set} → ℕ → A → NatMap A → NatMap A insert n a m = (n , a) ∷ m fromAscList : {A : Set} → List (ℕ × A) → NatMap A fromAscList [] = [] fromAscList ((n , a) ∷ xs) = insert n a (fromAscList xs) empty : {A : Set} → NatMap A empty = [] union : {A : Set} → NatMap A → NatMap A → NatMap A union [] m = m union ((n , a) ∷ xs) m = insert n a (union xs m) open NatMap checkInsert : {A : Set} → (A → A → Bool) → ℕ → A → NatMap A → Maybe (NatMap A) checkInsert eq i b m with lookup i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just c | true = just m checkInsert eq i b m | just c | false = nothing checkInsert eq i b m | nothing = just (insert i b m) assoc : {A : Set} → (A → A → Bool) → List ℕ → List A → Maybe (NatMap A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing --data Equal? where -- same ... -- different ... generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A generate f [] = empty generate f (n ∷ ns) = insert n (f n) (generate f ns) -- this lemma is probably wrong, because two different NatMaps may represent the same semantic value. lemma-1 : {τ : Set} → (eq : τ → τ → Bool) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) == just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) = {!!}