module Bidir where open import Data.Bool hiding (_≟_) open import Data.Nat open import Data.Fin open import Data.Maybe open import Data.List hiding (replicate) open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec) open import Data.Product hiding (zip ; map) open import Function open import Relation.Nullary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality _>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B _>>=_ = flip (flip maybe′ nothing) module FinMap where FinMapMaybe : ℕ → Set → Set FinMapMaybe n A = Vec (Maybe A) n lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A lookupM = lookupVec insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A insert f a m = m [ f ]≔ (just a) empty : {A : Set} {n : ℕ} → FinMapMaybe n A empty = replicate nothing fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A fromAscList [] = empty fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) FinMap : ℕ → Set → Set FinMap n A = Vec A n lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A lookup = lookupVec fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A fromFunc = tabulate union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1)) open FinMap EqInst : Set → Set EqInst A = (x y : A) → Dec (x ≡ y) checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) checkInsert eq i b m with lookupM i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b) assoc _ _ _ = nothing generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A generate f is = fromAscList (zip is (map f is)) data Is-Just {A : Set} : (Maybe A) → Set where is-just : (x : A) → Is-Just (just x) the : {A : Set} {t : Maybe A} → Is-Just t → A the (is-just x) = x lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a? : Is-Just (lookup f m)) → m ≡ insert f (the a?) m lemma-insert-same [] () a? lemma-insert-same (.(just x) ∷ xs) zero (is-just x) = refl lemma-insert-same (x ∷ xs) (suc f′) a? = cong (_∷_ x) (lemma-insert-same xs f′ a?) lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) with assoc eq is′ (map f is′) | generate f is′ | lemma-1 eq f is′ lemma-1 eq f (i ∷ is′) | nothing | _ | () lemma-1 eq f (i ∷ is′) | just m | .m | refl with lookup i m lemma-1 eq f (i ∷ is′) | just m | .m | refl | nothing = refl lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x with eq (f i) x lemma-1 eq f (i ∷ is′) | just m | .m | refl | just .(f i) | yes refl = cong just (lemma-insert-same m i {!!}) lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x | no ¬p = {!!} lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v lemma-2 eq is v h p = {!!} idrange : (n : ℕ) → List (Fin n) idrange n = toList (tabulate id) bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B)) bff get eq s v = let s′ = idrange (length s) g = fromFunc (λ f → lookupVec f (fromList s)) h = assoc eq (get s′) v h′ = h >>= (λ jh → just (union jh g)) in h′ >>= (λ jh′ → just (map (flip lookup jh′) s′)) theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s theorem-1 get eq s = {!!}