module Bidir where open import Data.Bool hiding (_≟_) open import Data.Nat open import Data.Fin open import Data.Maybe open import Data.List hiding (replicate) open import Data.Vec hiding (map ; zip) renaming (lookup to lookupVec) open import Data.Product hiding (zip ; map) open import Function open import Relation.Nullary open import Relation.Binary.Core module FinMap where FinMap : ℕ → Set → Set FinMap n A = Vec (Maybe A) n lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → Maybe A lookup = lookupVec notMember : {A : Set} → {n : ℕ} → Fin n → FinMap n A → Bool notMember n = not ∘ maybeToBool ∘ lookup n insert : {A : Set} {n : ℕ} → Fin n → A → FinMap n A → FinMap n A insert f a m = m [ f ]≔ (just a) empty : {A : Set} {n : ℕ} → FinMap n A empty = replicate nothing fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMap n A fromAscList [] = empty fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) union : {A : Set} {n : ℕ} → FinMap n A → FinMap n A → FinMap n A union m1 m2 = tabulate (λ f → maybe′ just (lookup f m2) (lookup f m1)) open FinMap checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMap n A → Maybe (FinMap n A) checkInsert eq i b m with lookup i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMap n A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMap n A generate f [] = empty generate f (n ∷ ns) = insert n (f n) (generate f ns) lemma-1 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) = {!!} idrange : (n : ℕ) → List (Fin n) idrange n = toList (tabulate id) bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B)) bff get eq s v = let s′ = idrange (length s) g = fromAscList (zip s′ s) h = assoc eq (get s′) v h′ = maybe′ (λ jh → just (union jh g)) nothing h in maybe′ (λ jh′ → just (map {!!} s′)) nothing h′