module Bidir where open import Data.Bool hiding (_≟_) open import Data.Nat open import Data.Maybe open import Data.List hiding (replicate) open import Data.Product hiding (zip ; map) open import Function open import Relation.Nullary open import Relation.Binary.Core module NatMap where NatMap : Set → Set NatMap A = List (ℕ × A) lookup : {A : Set} → ℕ → NatMap A → Maybe A lookup n [] = nothing lookup n ((m , a) ∷ xs) with n ≟ m lookup n ((.n , a) ∷ xs) | yes refl = just a lookup n ((m , a) ∷ xs) | no ¬p = lookup n xs notMember : {A : Set} → ℕ → NatMap A → Bool notMember n m = not (maybeToBool (lookup n m)) -- For now we simply prepend the element. This may lead to duplicates. insert : {A : Set} → ℕ → A → NatMap A → NatMap A insert n a m = (n , a) ∷ m fromAscList : {A : Set} → List (ℕ × A) → NatMap A fromAscList [] = [] fromAscList ((n , a) ∷ xs) = insert n a (fromAscList xs) empty : {A : Set} → NatMap A empty = [] union : {A : Set} → NatMap A → NatMap A → NatMap A union [] m = m union ((n , a) ∷ xs) m = insert n a (union xs m) open NatMap checkInsert : {A : Set} → ((x y : A) → Dec (x ≡ y)) → ℕ → A → NatMap A → Maybe (NatMap A) checkInsert eq i b m with lookup i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) assoc : {A : Set} → ((x y : A) → Dec (x ≡ y)) → List ℕ → List A → Maybe (NatMap A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing --data Equal? where -- same ... -- different ... generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A generate f [] = empty generate f (n ∷ ns) = insert n (f n) (generate f ns) -- this lemma is probably wrong, because two different NatMaps may represent the same semantic value. lemma-1 : {τ : Set} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) = {!!}