module CheckInsert where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Data.Fin.Props using (_≟_) open import Data.Maybe using (Maybe ; nothing ; just) open import Data.List using (List ; [] ; _∷_) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.Core using (_≡_ ; refl) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_ ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap EqInst : Set → Set EqInst A = (x y : A) → Dec (x ≡ y) checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) checkInsert eq i b m with lookupM i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (P : Set) : Set where field same : lookupM i m ≡ just x → P new : lookupM i m ≡ nothing → P wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m apply-checkInsertProof eq i x m rp | just x' | il with eq x x' apply-checkInsertProof eq i x m rp | just .x | Reveal_is_.[_] il | yes refl = checkInsertProof.same rp il apply-checkInsertProof eq i x m rp | just x' | Reveal_is_.[_] il | no x≢x' = checkInsertProof.wrong rp x' x≢x' il apply-checkInsertProof eq i x m rp | nothing | Reveal_is_.[_] il = checkInsertProof.new rp il lemma-checkInsert-same : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ just x → checkInsert eq i x m ≡ just m lemma-checkInsert-same eq i x m p with lookupM i m lemma-checkInsert-same eq i x m refl | .(just x) with eq x x lemma-checkInsert-same eq i x m refl | .(just x) | yes refl = refl lemma-checkInsert-same eq i x m refl | .(just x) | no x≢x = contradiction refl x≢x lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ nothing → checkInsert eq i x m ≡ just (insert i x m) lemma-checkInsert-new eq i x m p with lookupM i m lemma-checkInsert-new eq i x m refl | .nothing = refl lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing lemma-checkInsert-wrong eq i x m x' d p with lookupM i m lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x' lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | no ¬q = refl record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (e : Maybe (FinMapMaybe n A)) : Set where field same : lookupM i m ≡ just x → just m ≡ e new : lookupM i m ≡ nothing → just (insert i x m) ≡ e wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e) lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record { same = λ p → trans (lemma-checkInsert-same eq i x m p) (checkInsertEqualProof.same o p) ; new = λ p → trans (lemma-checkInsert-new eq i x m p) (checkInsertEqualProof.new o p) ; wrong = λ x' q p → trans (lemma-checkInsert-wrong eq i x m x' q p) (checkInsertEqualProof.wrong o x' q p) } lemma-checkInsert-restrict : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) lemma-checkInsert-restrict {τ} eq f i is = apply-checkInsertProof eq i (f i) (restrict f is) (lift-checkInsertProof record { same = λ lookupM≡justx → cong just (lemma-insert-same (restrict f is) i (f i) lookupM≡justx) ; new = λ lookupM≡nothing → refl ; wrong = λ x' x≢x' lookupM≡justx' → contradiction (lemma-lookupM-restrict i f is x' lookupM≡justx') x≢x' }) lemma-lookupM-checkInsert : {A : Set} {n : ℕ} → (eq : EqInst A) → (i j : Fin n) → (x y : A) → (h h' : FinMapMaybe n A) → lookupM i h ≡ just x → checkInsert eq j y h ≡ just h' → lookupM i h' ≡ just x lemma-lookupM-checkInsert eq i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j lemma-lookupM-checkInsert eq i .i x y h .(insert i y h) pl refl | nothing | Reveal_is_.[_] pl' | yes refl with begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ nothing ∎ ... | () lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin lookupM i (insert j y h) ≡⟨ sym (lemma-lookupM-insert-other i j y h ¬p) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just z | pl' with eq y z lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just .y | pl' | yes refl = begin lookupM i h' ≡⟨ cong (lookupM i) (lemma-from-just (sym ph')) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ lemma-lookupM-checkInsert eq i j x y h h' pl () | just z | pl' | no ¬p