module FinMap where open import Data.Nat using (ℕ) open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Props using (_≟_) open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate) renaming (lookup to lookupVec) open import Data.List using (List ; [] ; _∷_ ; map ; zip) open import Data.Product using (_×_ ; _,_) open import Function using (id) open import Relation.Nullary using (¬_ ; yes ; no) open import Relation.Nullary.Negation using (contradiction ; contraposition) open import Relation.Binary.Core using (_≡_ ; refl) open import Relation.Binary.PropositionalEquality using (cong ; sym) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) FinMapMaybe : ℕ → Set → Set FinMapMaybe n A = Vec (Maybe A) n lookupM : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → Maybe A lookupM = lookupVec insert : {A : Set} {n : ℕ} → Fin n → A → FinMapMaybe n A → FinMapMaybe n A insert f a m = m [ f ]≔ (just a) empty : {A : Set} {n : ℕ} → FinMapMaybe n A empty = replicate nothing fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A fromAscList [] = empty fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) FinMap : ℕ → Set → Set FinMap n A = Vec A n lookup : {A : Set} {n : ℕ} → Fin n → FinMap n A → A lookup = lookupVec fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMap n A fromFunc = tabulate union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMap n A → FinMap n A union m1 m2 = tabulate (λ f → maybe′ id (lookup f m2) (lookupM f m1)) generate : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A generate f is = fromAscList (zip is (map f is)) lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m lemma-insert-same [] () a p lemma-insert-same (.(just a) ∷ xs) zero a refl = refl lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p) lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing lemma-lookupM-empty zero = refl lemma-lookupM-empty (suc i) = lemma-lookupM-empty i lemma-lookupM-insert : {A : Set} {n : ℕ} → (i : Fin n) → (a : A) → (m : FinMapMaybe n A) → lookupM i (insert i a m) ≡ just a lemma-lookupM-insert zero _ (_ ∷ _) = refl lemma-lookupM-insert (suc i) a (_ ∷ xs) = lemma-lookupM-insert i a xs lemma-lookupM-insert-other : {A : Set} {n : ℕ} → (i j : Fin n) → (a : A) → (m : FinMapMaybe n A) → ¬(i ≡ j) → lookupM i m ≡ lookupM i (insert j a m) lemma-lookupM-insert-other zero zero a m p = contradiction refl p lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (contraposition (cong suc) p) lemma-from-just : {A : Set} → {x y : A} → _≡_ {_} {Maybe A} (just x) (just y) → x ≡ y lemma-from-just refl = refl lemma-lookupM-generate : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (generate f is) ≡ just a → f i ≡ a lemma-lookupM-generate {A} i f [] a p with begin just a ≡⟨ sym p ⟩ lookupM i (generate f []) ≡⟨ refl ⟩ lookupM i empty ≡⟨ lemma-lookupM-empty i ⟩ nothing ∎ lemma-lookupM-generate i f [] a p | () lemma-lookupM-generate i f (i' ∷ is) a p with i ≟ i' lemma-lookupM-generate i f (.i ∷ is) a p | yes refl = lemma-from-just (begin just (f i) ≡⟨ sym (lemma-lookupM-insert i (f i) (generate f is)) ⟩ lookupM i (insert i (f i) (generate f is)) ≡⟨ refl ⟩ lookupM i (generate f (i ∷ is)) ≡⟨ p ⟩ just a ∎) lemma-lookupM-generate i f (i' ∷ is) a p | no ¬p2 = lemma-lookupM-generate i f is a (begin lookupM i (generate f is) ≡⟨ lemma-lookupM-insert-other i i' (f i') (generate f is) ¬p2 ⟩ lookupM i (insert i' (f i') (generate f is)) ≡⟨ refl ⟩ lookupM i (generate f (i' ∷ is)) ≡⟨ p ⟩ just a ∎)