module FreeTheorems where open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ) open import Data.List using (List ; map) open import Data.Vec using (Vec) renaming (map to mapV) open import Function using (_∘_) open import Function.Equality using (_⟶_ ; _⟨$⟩_) open import Relation.Binary.PropositionalEquality using (_≗_ ; cong) renaming (setoid to EqSetoid) open import Relation.Binary using (Setoid) import GetTypes module ListList where get-type : Set₁ get-type = {A : Set} → List A → List A open GetTypes.ListList public postulate free-theorem : (get : get-type) → {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get assume-get : get-type → Get assume-get get = record { get = get; free-theorem = free-theorem get } module VecVec where get-type : (ℕ → ℕ) → Set₁ get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) open GetTypes.VecVec public postulate free-theorem : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get assume-get : {getlen : ℕ → ℕ} → (get : get-type getlen) → Get assume-get {getlen} get = record { getlen = getlen; get = get; free-theorem = free-theorem get } module PartialVecVec where get-type : {I : Setoid ℓ₀ ℓ₀} → (I ⟶ EqSetoid ℕ) → (I ⟶ EqSetoid ℕ) → Set₁ get-type {I} gl₁ gl₂ = {A : Set} {i : Setoid.Carrier I} → Vec A (gl₁ ⟨$⟩ i) → Vec A (gl₂ ⟨$⟩ i) open GetTypes.PartialVecVec public postulate free-theorem : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ⟶ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) (get : get-type gl₁ gl₂) → {α β : Set} → (f : α → β) → {i : Setoid.Carrier I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get assume-get : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ⟶ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) (get : get-type gl₁ gl₂) → Get assume-get {I} gl₁ gl₂ get = record { I = I; gl₁ = gl₁; gl₂ = gl₂; get = get; free-theorem = free-theorem gl₁ gl₂ get }