module FreeTheorems where open import Data.Nat using (ℕ) open import Data.List using (List ; map) open import Data.Vec using (Vec) renaming (map to mapV) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≗_) module ListList where get-type : Set₁ get-type = {A : Set} → List A → List A record Get : Set₁ where field get : {A : Set} → List A → List A free-theorem : {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get postulate free-theorem : (get : get-type) → {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get assume-get : get-type → Get assume-get get = record { get = get; free-theorem = free-theorem get } module VecVec where get-type : (ℕ → ℕ) → Set₁ get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) record Get : Set₁ where field getlen : ℕ → ℕ get : {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) free-theorem : {α β : Set} (f : α → β) {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get postulate free-theorem : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get assume-get : {getlen : ℕ → ℕ} → (get : get-type getlen) → Get assume-get {getlen} get = record { getlen = getlen; get = get; free-theorem = free-theorem get }