module Generic where open import Data.List using (List ; length ; replicate) renaming ([] to []L ; _∷_ to _∷L_) open import Data.Maybe using (Maybe ; just) open import Data.Nat using (ℕ ; zero ; suc) open import Data.Product using (_×_ ; _,_) open import Data.Vec using (Vec ; toList ; fromList ; map) renaming ([] to []V ; _∷_ to _∷V_) open import Function using (_∘_) open import Relation.Binary.Core using (_≡_ ; refl) open import Relation.Binary.PropositionalEquality using (_≗_ ; cong ; subst ; trans) ∷-injective : {A : Set} {n : ℕ} {x y : A} {xs ys : Vec A n} → (x ∷V xs) ≡ (y ∷V ys) → x ≡ y × xs ≡ ys ∷-injective refl = refl , refl just-injective : {A : Set} → {x y : A} → Maybe.just x ≡ Maybe.just y → x ≡ y just-injective refl = refl length-replicate : {A : Set} {a : A} → (n : ℕ) → length (replicate n a) ≡ n length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) map-just-injective : {A : Set} {n : ℕ} {xs ys : Vec A n} → map Maybe.just xs ≡ map Maybe.just ys → xs ≡ ys map-just-injective {xs = []V} {ys = []V} p = refl map-just-injective {xs = x ∷V xs′} {ys = y ∷V ys′} p with ∷-injective p map-just-injective {xs = x ∷V xs′} {ys = .x ∷V ys′} p | refl , p′ = cong (_∷V_ x) (map-just-injective p′) subst-cong : {A : Set} → (T : A → Set) → {g : A → A} → {a b : A} → (f : {c : A} → T c → T (g c)) → (p : a ≡ b) → f ∘ subst T p ≗ subst T (cong g p) ∘ f subst-cong T f refl _ = refl subst-fromList : {A : Set} {x y : List A} → (p : y ≡ x) → subst (Vec A) (cong length p) (fromList y) ≡ fromList x subst-fromList refl = refl subst-subst : {A : Set} (T : A → Set) {a b c : A} → (p : a ≡ b) → (p′ : b ≡ c) → (x : T a) → subst T p′ (subst T p x) ≡ subst T (trans p p′) x subst-subst T refl p′ x = refl toList-fromList : {A : Set} → (l : List A) → toList (fromList l) ≡ l toList-fromList []L = refl toList-fromList (x ∷L xs) = cong (_∷L_ x) (toList-fromList xs) toList-subst : {A : Set} → {n m : ℕ} (v : Vec A n) → (p : n ≡ m) → toList (subst (Vec A) p v) ≡ toList v toList-subst v refl = refl