module LiftGet where open import Data.Unit using (⊤ ; tt) open import Data.Nat using (ℕ ; suc) open import Data.Vec using (Vec ; toList ; fromList) renaming ([] to []V ; _∷_ to _∷V_) open import Data.List using (List ; [] ; _∷_ ; length ; replicate ; map) open import Data.List.Properties using (length-map) open import Data.Product using (∃ ; _,_ ; proj₂) open import Function using (_∘_ ; flip ; const) open import Relation.Binary.Core using (_≡_) open import Relation.Binary.PropositionalEquality using (_≗_ ; sym ; cong ; refl) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) getVec-to-getList : {getlen : ℕ → ℕ} → ({A : Set} {n : ℕ} → Vec A n → Vec A (getlen n)) → ({B : Set} → List B → List B) getVec-to-getList get = toList ∘ get ∘ fromList getList-to-getlen : ({A : Set} → List A → List A) → ℕ → ℕ getList-to-getlen get = length ∘ get ∘ flip replicate tt postulate free-theorem-list-list : {β γ : Set} → (get : {α : Set} → List α → List α) → (f : β → γ) → get ∘ map f ≗ map f ∘ get replicate-length : {A : Set} → (l : List A) → map (const tt) l ≡ replicate (length l) tt replicate-length [] = refl replicate-length (_ ∷ l) = cong (_∷_ tt) (replicate-length l) getList-length : (get : {A : Set} → List A → List A) → {B : Set} → (l : List B) → length (get l) ≡ getList-to-getlen get (length l) getList-length get l = begin length (get l) ≡⟨ sym (length-map (const tt) (get l)) ⟩ length (map (const tt) (get l)) ≡⟨ cong length (sym (free-theorem-list-list get (const tt) l)) ⟩ length (get (map (const tt) l)) ≡⟨ cong (length ∘ get) (replicate-length l) ⟩ length (get (replicate (length l) tt)) ∎ length-toList : {A : Set} {n : ℕ} → (v : Vec A n) → length (toList v) ≡ n length-toList []V = refl length-toList (x ∷V xs) = cong suc (length-toList xs) vec-length : {A : Set} {n m : ℕ} → n ≡ m → Vec A n → Vec A m vec-length refl v = v getList-to-getVec : ({A : Set} → List A → List A) → ∃ λ (getlen : ℕ → ℕ) → {B : Set} {n : ℕ} → Vec B n → Vec B (getlen n) getList-to-getVec get = getlen , get' where getlen : ℕ → ℕ getlen = getList-to-getlen get length-prop : {C : Set} → (m : ℕ) → (v : Vec C m) → length (get (toList v)) ≡ length (get (replicate m tt)) length-prop m v = begin length (get (toList v)) ≡⟨ getList-length get (toList v) ⟩ length (get (replicate (length (toList v)) tt)) ≡⟨ cong (length ∘ get ∘ flip replicate tt) (length-toList v) ⟩ length (get (replicate m tt)) ∎ get' : {C : Set} {m : ℕ} → Vec C m → Vec C (getlen m) get' {_} {m} v = vec-length (length-prop m v) (fromList (get (toList v))) get-trafo-1 : (get : {A : Set} → List A → List A) → {B : Set} → getVec-to-getList (proj₂ (getList-to-getVec get)) {B} ≗ get {B} get-trafo-1 get l = begin getVec-to-getList (proj₂ (getList-to-getVec get)) l ≡⟨ {!!} ⟩ get l ∎