open import Relation.Binary.Core using (Decidable ; _≡_) module Precond (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Data.List using (List ; [] ; _∷_) open import Data.Vec using (Vec ; [] ; _∷_ ; map ; lookup ; toList) import Data.List.Any open Data.List.Any.Membership-≡ using (_∉_) open import Data.Maybe using (just) open import Data.Product using (∃ ; _,_) open import Function using (flip ; _∘_) open import Relation.Binary.PropositionalEquality using (refl ; cong) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap using (FinMap ; FinMapMaybe ; union ; fromFunc ; empty ; insert) import CheckInsert open CheckInsert Carrier deq using (checkInsert ; lemma-checkInsert-new) open import BFF using (fmap ; _>>=_) import Bidir open Bidir Carrier deq using (lemma-∉-lookupM-assoc) open BFF.VecBFF Carrier deq using (get-type ; assoc ; enumerate ; denumerate ; bff) assoc-enough : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → (v : Vec Carrier (getlen m)) → ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff get s v ≡ just u assoc-enough get s v (h , p) = u , cong (fmap (flip map s′ ∘ flip lookup) ∘ (fmap (flip union g))) p where s′ = enumerate s g = fromFunc (denumerate s) u = map (flip lookup (union h g)) s′ data All-different {A : Set} : List A → Set where different-[] : All-different [] different-∷ : {x : A} {xs : List A} → x ∉ xs → All-different xs → All-different (x ∷ xs) different-assoc : {m n : ℕ} → (u : Vec (Fin n) m) → (v : Vec Carrier m) → All-different (toList u) → ∃ λ h → assoc u v ≡ just h different-assoc [] [] p = empty , refl different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) with different-assoc us vs diff-us different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) | h , p' = insert u v h , (begin assoc (u ∷ us) (v ∷ vs) ≡⟨ refl ⟩ assoc us vs >>= checkInsert u v ≡⟨ cong (flip _>>=_ (checkInsert u v)) p' ⟩ checkInsert u v h ≡⟨ lemma-checkInsert-new u v h (lemma-∉-lookupM-assoc u us vs h p' u∉us) ⟩ just (insert u v h) ∎)