module Precond where open import Data.Nat using (ℕ) renaming (zero to nzero ; suc to nsuc) open import Data.Fin using (Fin ; zero ; suc) open import Data.Vec using (Vec ; [] ; _∷_ ; map ; lookup ; toList) open import Data.List.Any using (here ; there) open Data.List.Any.Membership-≡ using (_∉_) open import Data.Maybe using (just) open import Data.Product using (∃ ; _,_) open import Function using (flip ; _∘_) open import Relation.Binary.Core using (_≡_ ; _≢_) open import Relation.Binary.PropositionalEquality using (refl ; cong) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap using (FinMap ; FinMapMaybe ; union ; fromFunc ; empty ; insert) open import CheckInsert using (EqInst ; checkInsert ; lemma-checkInsert-new) open import BFF using (fmap ; _>>=_) open import Bidir using (lemma-∉-lookupM-assoc) open BFF.VecBFF using (assoc ; enumerate ; denumerate ; bff) assoc-enough : {getlen : ℕ → ℕ} (get : {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n)) → {B : Set} {m : ℕ} → (eq : EqInst B) → (s : Vec B m) → (v : Vec B (getlen m)) → (h : FinMapMaybe m B) → assoc eq (get (enumerate s)) v ≡ just h → ∃ λ u → bff get eq s v ≡ just u assoc-enough get {B} {m} eq s v h p = map (flip lookup (union h g)) s′ , (begin bff get eq s v ≡⟨ refl ⟩ fmap (flip map s′ ∘ flip lookup) (fmap (flip union g) (assoc eq (get s′) v)) ≡⟨ cong (fmap (flip map s′ ∘ flip lookup)) (cong (fmap (flip union g)) p) ⟩ fmap (flip map s′ ∘ flip lookup) (fmap (flip union g) (just h)) ≡⟨ refl ⟩ just (map (flip lookup (union h g)) s′) ∎) where s′ : Vec (Fin m) m s′ = enumerate s g : FinMap m B g = fromFunc (denumerate s) all-different : {A : Set} {n : ℕ} → Vec A n → Set all-different {_} {n} v = (i : Fin n) → (j : Fin n) → i ≢ j → lookup i v ≢ lookup j v suc-injective : {n : ℕ} {i j : Fin n} → (suc i ≡ suc j) → i ≡ j suc-injective refl = refl different-swap : {A : Set} {n : ℕ} → (a b : A) → (v : Vec A n) → all-different (a ∷ b ∷ v) → all-different (b ∷ a ∷ v) different-swap a b v p zero zero i≢j li≡lj = i≢j refl different-swap a b v p zero (suc zero) i≢j li≡lj = p (suc zero) zero (λ ()) li≡lj different-swap a b v p zero (suc (suc j)) i≢j li≡lj = p (suc zero) (suc (suc j)) (λ ()) li≡lj different-swap a b v p (suc zero) zero i≢j li≡lj = p zero (suc zero) (λ ()) li≡lj different-swap a b v p (suc zero) (suc zero) i≢j li≡lj = i≢j refl different-swap a b v p (suc zero) (suc (suc j)) i≢j li≡lj = p zero (suc (suc j)) (λ ()) li≡lj different-swap a b v p (suc (suc i)) zero i≢j li≡lj = p (suc (suc i)) (suc zero) (λ ()) li≡lj different-swap a b v p (suc (suc i)) (suc zero) i≢j li≡lj = p (suc (suc i)) zero (λ ()) li≡lj different-swap a b v p (suc (suc i)) (suc (suc j)) i≢j li≡lj = p (suc (suc i)) (suc (suc j)) i≢j li≡lj different-drop : {A : Set} {n : ℕ} → (a : A) → (v : Vec A n) → all-different (a ∷ v) → all-different v different-drop a v p i j i≢j = p (suc i) (suc j) (i≢j ∘ suc-injective) different-∉ : {A : Set} {n : ℕ} → (x : A) (xs : Vec A n) → all-different (x ∷ xs) → x ∉ (toList xs) different-∉ x [] p () different-∉ x (y ∷ ys) p (here px) = p zero (suc zero) (λ ()) px different-∉ x (y ∷ ys) p (there pxs) = different-∉ x ys (different-drop y (x ∷ ys) (different-swap x y ys p)) pxs different-assoc : {B : Set} {m n : ℕ} → (eq : EqInst B) → (u : Vec (Fin n) m) → (v : Vec B m) → all-different u → ∃ λ h → assoc eq u v ≡ just h different-assoc eq [] [] p = empty , refl different-assoc eq (u ∷ us) (v ∷ vs) p with different-assoc eq us vs (λ i j i≢j → p (suc i) (suc j) (i≢j ∘ suc-injective)) different-assoc eq (u ∷ us) (v ∷ vs) p | h , p' = insert u v h , (begin assoc eq (u ∷ us) (v ∷ vs) ≡⟨ refl ⟩ assoc eq us vs >>= checkInsert eq u v ≡⟨ cong (flip _>>=_ (checkInsert eq u v)) p' ⟩ checkInsert eq u v h ≡⟨ lemma-checkInsert-new eq u v h (lemma-∉-lookupM-assoc eq u us vs h p' (different-∉ u us p)) ⟩ just (insert u v h) ∎)