open import Relation.Binary.Core using (Decidable ; _≡_) module Precond (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Props using (_≟_) open import Data.List using (List ; [] ; _∷_) open import Level using () renaming (zero to ℓ₀) import Category.Monad import Category.Functor open import Data.Maybe using (Maybe ; nothing ; just ; maybe′) open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.Vec using (Vec ; [] ; _∷_ ; map ; lookup ; toList ; tabulate) open import Data.Vec.Properties using (map-cong ; map-∘ ; tabulate-∘) import Data.List.All open import Data.List.Any using (here ; there) open Data.List.Any.Membership-≡ using (_∉_) open import Data.Maybe using (just) open import Data.Product using (∃ ; _,_ ; proj₁ ; proj₂) open import Function using (flip ; _∘_ ; id) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality using (refl ; cong ; inspect ; [_] ; sym ; decSetoid) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import Relation.Nullary using (yes ; no) open import Generic using (mapMV ; sequenceV) open import FinMap using (FinMapMaybe ; lookupM ; union ; fromFunc ; empty ; insert ; lemma-lookupM-empty ; delete-many ; lemma-tabulate-∘ ; delete ; lemma-lookupM-delete ; lemma-lookupM-fromFunc ; reshape ; lemma-reshape-id) import CheckInsert open CheckInsert (decSetoid deq) using (checkInsert ; lemma-checkInsert-new ; lemma-lookupM-checkInsert-other) import BFF import Bidir open Bidir (decSetoid deq) using (_in-domain-of_ ; lemma-assoc-domain ; lemma-just-sequence) import GetTypes open GetTypes.PartialVecVec using (Get ; module Get) open BFF.PartialVecBFF (decSetoid deq) using (assoc ; enumerate ; denumerate ; bff ; enumeratel) lemma-maybe-just : {A : Set} → (a : A) → (ma : Maybe A) → maybe′ Maybe.just (just a) ma ≡ Maybe.just (maybe′ id a ma) lemma-maybe-just a (just x) = refl lemma-maybe-just a nothing = refl lemma-union-delete-fromFunc : {m n : ℕ} {A : Set} {is : Vec (Fin n) m} {h : FinMapMaybe n A} {g : Fin n → A} → (toList is) in-domain-of h → ∃ λ v → union h (delete-many is (fromFunc g)) ≡ fromFunc v lemma-union-delete-fromFunc {is = []} {h = h} {g = g} p = _ , (lemma-tabulate-∘ (λ f → begin maybe′ just (lookupM f (fromFunc g)) (lookupM f h) ≡⟨ cong (flip (maybe′ just) (lookupM f h)) (lemma-lookupM-fromFunc g f) ⟩ maybe′ just (just (g f)) (lookupM f h) ≡⟨ lemma-maybe-just (g f) (lookupM f h) ⟩ just (maybe′ id (g f) (lookupM f h)) ∎)) lemma-union-delete-fromFunc {n = n} {is = i ∷ is} {h = h} {g = g} (Data.List.All._∷_ (x , px) ps) = _ , (begin union h (delete i (delete-many is (fromFunc g))) ≡⟨ lemma-tabulate-∘ inner ⟩ union h (delete-many is (fromFunc g)) ≡⟨ proj₂ (lemma-union-delete-fromFunc ps) ⟩ _ ∎) where inner : (f : Fin n) → maybe′ just (lookupM f (delete i (delete-many is (fromFunc g)))) (lookup f h) ≡ maybe′ just (lookupM f (delete-many is (fromFunc g))) (lookup f h) inner f with f ≟ i inner .i | yes refl = begin maybe′ just (lookupM i (delete i (delete-many is (fromFunc g)))) (lookup i h) ≡⟨ cong (maybe′ just _) px ⟩ just x ≡⟨ cong (maybe′ just _) (sym px) ⟩ maybe′ just (lookupM i (delete-many is (fromFunc g))) (lookup i h) ∎ inner f | no f≢i = cong (flip (maybe′ just) (lookup f h)) (lemma-lookupM-delete (delete-many is (fromFunc g)) f≢i) assoc-enough : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G i)) → ∃ (λ h → assoc (Get.get G (enumerate s)) v ≡ just h) → ∃ λ u → bff G i s v ≡ just u assoc-enough G {i} s v (h , p) = _ , (begin bff G i s v ≡⟨ cong (flip _>>=_ (flip mapMV t ∘ flip lookupM) ∘ _<$>_ (flip union (reshape g′ (Get.|gl₁| G i)))) p ⟩ mapMV (flip lookupM (union h (reshape g′ (Get.|gl₁| G i)))) t ≡⟨ refl ⟩ sequenceV (map (flip lookupM (union h (reshape g′ (Get.|gl₁| G i)))) t) ≡⟨ cong (sequenceV ∘ flip map t ∘ flip lookupM ∘ union h) (lemma-reshape-id g′) ⟩ sequenceV (map (flip lookupM (union h g′)) t) ≡⟨ cong (sequenceV ∘ flip map t ∘ flip lookupM) (proj₂ wp) ⟩ sequenceV (map (flip lookupM (fromFunc (proj₁ wp))) t) ≡⟨ cong sequenceV (map-cong (lemma-lookupM-fromFunc (proj₁ wp)) t) ⟩ sequenceV (map (Maybe.just ∘ proj₁ wp) t) ≡⟨ cong sequenceV (map-∘ just (proj₁ wp) t) ⟩ sequenceV (map Maybe.just (map (proj₁ wp) t)) ≡⟨ lemma-just-sequence (map (proj₁ wp) t) ⟩ just (map (proj₁ wp) t) ∎) where open Get G s′ = enumerate s g = fromFunc (denumerate s) g′ = delete-many (get s′) g t = enumeratel (Get.|gl₁| G i) wp = lemma-union-delete-fromFunc (lemma-assoc-domain (get t) v h p) data All-different {A : Set} : List A → Set where different-[] : All-different [] different-∷ : {x : A} {xs : List A} → x ∉ xs → All-different xs → All-different (x ∷ xs) lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing lemma-∉-lookupM-assoc i [] [] .empty refl i∉is = lemma-lookupM-empty i lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs' lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ] lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = begin lookupM i h ≡⟨ sym (lemma-lookupM-checkInsert-other i i' (i∉is ∘ here) x' h' h ph) ⟩ lookupM i h' ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩ nothing ∎ different-assoc : {m n : ℕ} → (u : Vec (Fin n) m) → (v : Vec Carrier m) → All-different (toList u) → ∃ λ h → assoc u v ≡ just h different-assoc [] [] p = empty , refl different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) with different-assoc us vs diff-us different-assoc (u ∷ us) (v ∷ vs) (different-∷ u∉us diff-us) | h , p' = insert u v h , (begin assoc (u ∷ us) (v ∷ vs) ≡⟨ refl ⟩ (assoc us vs >>= checkInsert u v) ≡⟨ cong (flip _>>=_ (checkInsert u v)) p' ⟩ checkInsert u v h ≡⟨ lemma-checkInsert-new u v h (lemma-∉-lookupM-assoc u us vs h p' u∉us) ⟩ just (insert u v h) ∎)