module Structures where open import Category.Functor using (RawFunctor ; module RawFunctor) open import Category.Monad using (module RawMonad) open import Data.Maybe using (Maybe) renaming (monad to MaybeMonad) open import Data.Nat using (ℕ) open import Data.Vec as V using (Vec) import Data.Vec.Properties as VP open import Function using (_∘_ ; flip ; id) open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_) open import Relation.Binary using (_Preserves_⟶_) open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; module ≡-Reasoning) open import Generic using (sequenceV) record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where field cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_ identity : {α : Set} → f {α} id ≗ id composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → f (g ∘ h) ≗ f g ∘ f h isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β) isCongruence {α} {β} = record { _⟨$⟩_ = λ g → record { _⟨$⟩_ = f (_⟨$⟩_ g) ; cong = P.cong (f (_⟨$⟩_ g)) } ; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h P.refl) x) } record Functor (f : Set → Set) : Set₁ where field rawfunctor : RawFunctor f isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor) open RawFunctor rawfunctor public open IsFunctor isFunctor public record IsShaped (S : Set) (C : Set → S → Set) (arity : S → ℕ) (content : {α : Set} {s : S} → C α s → Vec α (arity s)) (fill : {α : Set} → (s : S) → Vec α (arity s) → C α s) : Set₁ where field content-fill : {α : Set} {s : S} → (c : C α s) → fill s (content c) ≡ c fill-content : {α : Set} → (s : S) → (v : Vec α (arity s)) → content (fill s v) ≡ v fmap : {α β : Set} → (f : α → β) → {s : S} → C α s → C β s fmap f {s} c = fill s (V.map f (content c)) isFunctor : (s : S) → IsFunctor (flip C s) (λ f → fmap f) isFunctor s = record { cong = λ g≗h c → P.cong (fill s) (VP.map-cong g≗h (content c)) ; identity = λ c → begin fill s (V.map id (content c)) ≡⟨ P.cong (fill s) (VP.map-id (content c)) ⟩ fill s (content c) ≡⟨ content-fill c ⟩ c ∎ ; composition = λ g h c → P.cong (fill s) (begin V.map (g ∘ h) (content c) ≡⟨ VP.map-∘ g h (content c) ⟩ V.map g (V.map h (content c)) ≡⟨ P.cong (V.map g) (P.sym (fill-content s (V.map h (content c)))) ⟩ V.map g (content (fill s (V.map h (content c)))) ∎) } where open ≡-Reasoning fmap-content : {α β : Set} → (f : α → β) → {s : S} → content {β} {s} ∘ fmap f ≗ V.map f ∘ content fmap-content f c = fill-content _ (V.map f (content c)) fill-fmap : {α β : Set} → (f : α → β) → (s : S) → fmap f ∘ fill s ≗ fill s ∘ V.map f fill-fmap f s v = P.cong (fill s ∘ V.map f) (fill-content s v) sequence : {α : Set} {s : S} → C (Maybe α) s → Maybe (C α s) sequence {s = s} c = fill s <$> sequenceV (content c) where open RawMonad MaybeMonad record Shaped (S : Set) (C : Set → S → Set) : Set₁ where field arity : S → ℕ content : {α : Set} {s : S} → C α s → Vec α (arity s) fill : {α : Set} → (s : S) → Vec α (arity s) → C α s isShaped : IsShaped S C arity content fill open IsShaped isShaped public