summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Bidir.agda5
1 files changed, 4 insertions, 1 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 07193c7..51b24b1 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -101,7 +101,10 @@ lemma-1 eq f (i ∷ is′) = begin
where open Relation.Binary.PropositionalEquality.≡-Reasoning
lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
-lemma-2 eq is v h p = {!!}
+lemma-2 eq [] [] h p = refl
+lemma-2 eq [] (x ∷ xs) h ()
+lemma-2 eq (x ∷ xs) [] h ()
+lemma-2 eq (i ∷ is) (x ∷ xs) h p = {!!}
idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)