summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--BFF.agda51
-rw-r--r--Bidir.agda50
-rw-r--r--Precond.agda14
3 files changed, 58 insertions, 57 deletions
diff --git a/BFF.agda b/BFF.agda
index 612c2c3..b7502ce 100644
--- a/BFF.agda
+++ b/BFF.agda
@@ -6,6 +6,7 @@ open import Data.Maybe using (Maybe ; just ; nothing ; maybe′)
open import Data.List using (List ; [] ; _∷_ ; map ; length)
open import Data.Vec using (Vec ; toList ; fromList ; tabulate ; allFin) renaming (lookup to lookupV ; map to mapV ; [] to []V ; _∷_ to _∷V_)
open import Function using (id ; _∘_ ; flip)
+open import Relation.Binary.Core using (Decidable ; _≡_)
open import FinMap
open import CheckInsert
@@ -17,43 +18,43 @@ _>>=_ = flip (flip maybe′ nothing)
fmap : {A B : Set} → (A → B) → Maybe A → Maybe B
fmap f = maybe′ (λ a → just (f a)) nothing
-module ListBFF where
+module ListBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
open FreeTheorems.ListList public using (get-type)
- assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
- assoc _ [] [] = just empty
- assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b)
- assoc _ _ _ = nothing
+ assoc : {n : ℕ} → List (Fin n) → List Carrier → Maybe (FinMapMaybe n Carrier)
+ assoc [] [] = just empty
+ assoc (i ∷ is) (b ∷ bs) = (assoc is bs) >>= (checkInsert deq i b)
+ assoc _ _ = nothing
- enumerate : {A : Set} → (l : List A) → List (Fin (length l))
+ enumerate : (l : List Carrier) → List (Fin (length l))
enumerate l = toList (tabulate id)
- denumerate : {A : Set} (l : List A) → Fin (length l) → A
+ denumerate : (l : List Carrier) → Fin (length l) → Carrier
denumerate l = flip lookupV (fromList l)
- bff : get-type → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
- bff get eq s v = let s′ = enumerate s
- g = fromFunc (denumerate s)
- h = assoc eq (get s′) v
- h′ = fmap (flip union g) h
- in fmap (flip map s′ ∘ flip lookup) h′
+ bff : get-type → (List Carrier → List Carrier → Maybe (List Carrier))
+ bff get s v = let s′ = enumerate s
+ g = fromFunc (denumerate s)
+ h = assoc (get s′) v
+ h′ = fmap (flip union g) h
+ in fmap (flip map s′ ∘ flip lookup) h′
-module VecBFF where
+module VecBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
open FreeTheorems.VecVec public using (get-type)
- assoc : {A : Set} {n m : ℕ} → EqInst A → Vec (Fin n) m → Vec A m → Maybe (FinMapMaybe n A)
- assoc _ []V []V = just empty
- assoc eq (i ∷V is) (b ∷V bs) = (assoc eq is bs) >>= (checkInsert eq i b)
+ assoc : {n m : ℕ} → Vec (Fin n) m → Vec Carrier m → Maybe (FinMapMaybe n Carrier)
+ assoc []V []V = just empty
+ assoc (i ∷V is) (b ∷V bs) = (assoc is bs) >>= (checkInsert deq i b)
- enumerate : {A : Set} {n : ℕ} → Vec A n → Vec (Fin n) n
+ enumerate : {n : ℕ} → Vec Carrier n → Vec (Fin n) n
enumerate _ = tabulate id
- denumerate : {A : Set} {n : ℕ} → Vec A n → Fin n → A
+ denumerate : {n : ℕ} → Vec Carrier n → Fin n → Carrier
denumerate = flip lookupV
- bff : {getlen : ℕ → ℕ} → (get-type getlen) → ({B : Set} {n : ℕ} → EqInst B → Vec B n → Vec B (getlen n) → Maybe (Vec B n))
- bff get eq s v = let s′ = enumerate s
- g = fromFunc (denumerate s)
- h = assoc eq (get s′) v
- h′ = fmap (flip union g) h
- in fmap (flip mapV s′ ∘ flip lookupV) h′
+ bff : {getlen : ℕ → ℕ} → (get-type getlen) → ({n : ℕ} → Vec Carrier n → Vec Carrier (getlen n) → Maybe (Vec Carrier n))
+ bff get s v = let s′ = enumerate s
+ g = fromFunc (denumerate s)
+ h = assoc (get s′) v
+ h′ = fmap (flip union g) h
+ in fmap (flip mapV s′ ∘ flip lookupV) h′
diff --git a/Bidir.agda b/Bidir.agda
index c3e3273..1b68e60 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -26,14 +26,14 @@ open FreeTheorems.VecVec using (get-type ; free-theorem)
open import FinMap
open import CheckInsert
open import BFF using (_>>=_ ; fmap)
-open BFF.VecBFF using (assoc ; enumerate ; denumerate ; bff)
+open BFF.VecBFF Carrier deq using (assoc ; enumerate ; denumerate ; bff)
-lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc deq is (map f is) ≡ just (restrict f (toList is))
+lemma-1 : {m n : ℕ} → (f : Fin n → Carrier) → (is : Vec (Fin n) m) → assoc is (map f is) ≡ just (restrict f (toList is))
lemma-1 f [] = refl
lemma-1 f (i ∷ is′) = begin
- assoc deq (i ∷ is′) (map f (i ∷ is′))
+ assoc (i ∷ is′) (map f (i ∷ is′))
≡⟨ refl ⟩
- assoc deq is′ (map f is′) >>= checkInsert deq i (f i)
+ assoc is′ (map f is′) >>= checkInsert deq i (f i)
≡⟨ cong (λ m → m >>= checkInsert deq i (f i)) (lemma-1 f is′) ⟩
just (restrict f (toList is′)) >>= (checkInsert deq i (f i))
≡⟨ refl ⟩
@@ -41,8 +41,8 @@ lemma-1 f (i ∷ is′) = begin
≡⟨ lemma-checkInsert-restrict deq f i (toList is′) ⟩
just (restrict f (toList (i ∷ is′))) ∎
-lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x
-lemma-lookupM-assoc i is x xs h p with assoc deq is xs
+lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x
+lemma-lookupM-assoc i is x xs h p with assoc is xs
lemma-lookupM-assoc i is x xs h () | nothing
lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof deq i x h' record
{ same = λ lookupM≡justx → begin
@@ -60,14 +60,14 @@ lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof deq i x
; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong deq i x h' x' x≢x' lookupM≡justx'))
}
-lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
+lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing
lemma-∉-lookupM-assoc i [] [] h ph i∉is = begin
lookupM i h
≡⟨ cong (lookupM i) (sym (lemma-from-just ph)) ⟩
lookupM i empty
≡⟨ lemma-lookupM-empty i ⟩
nothing ∎
-lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc deq is' xs' | inspect (assoc deq is') xs'
+lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs'
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ]
lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record {
same = λ lookupM-i'-h'≡just-x' → begin
@@ -90,9 +90,9 @@ lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph
_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
_in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is
-lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h → (toList is) in-domain-of h
+lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (toList is) in-domain-of h
lemma-assoc-domain [] [] h ph = Data.List.All.[]
-lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc deq is' xs' | inspect (assoc deq is') xs'
+lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs'
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ]
lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record {
same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_
@@ -115,7 +115,7 @@ lemma-map-lookupM-insert i (i' ∷ is') x h i∉is ph = begin
≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩
lookupM i' h ∷ map (flip lookupM h) is' ∎
-lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc deq is xs ≡ just h' → checkInsert deq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
+lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert deq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
lemma-map-lookupM-assoc i [] x [] h h' ph' ph = refl
lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph with any (_≟_ i) (toList (i' ∷ is'))
lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') p
@@ -130,16 +130,16 @@ lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | no ¬p rewri
≡⟨ lemma-map-lookupM-insert i (i' ∷ is') x h' ¬p (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') ⟩
map (flip lookupM h') (i' ∷ is') ∎
-lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc deq is v ≡ just h → map (flip lookupM h) is ≡ map just v
+lemma-2 : {m n : ℕ} → (is : Vec (Fin n) m) → (v : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is v ≡ just h → map (flip lookupM h) is ≡ map just v
lemma-2 [] [] h p = refl
-lemma-2 (i ∷ is) (x ∷ xs) h p with assoc deq is xs | inspect (assoc deq is) xs
+lemma-2 (i ∷ is) (x ∷ xs) h p with assoc is xs | inspect (assoc is) xs
lemma-2 (i ∷ is) (x ∷ xs) h () | nothing | _
lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
map (flip lookupM h) (i ∷ is)
≡⟨ refl ⟩
lookupM i h ∷ map (flip lookupM h) is
≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin
- assoc deq (i ∷ is) (x ∷ xs)
+ assoc (i ∷ is) (x ∷ xs)
≡⟨ cong (flip _>>=_ (checkInsert deq i x)) ir ⟩
checkInsert deq i x h'
≡⟨ p ⟩
@@ -152,7 +152,7 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
≡⟨ refl ⟩
map just (x ∷ xs) ∎
-lemma-map-denumerate-enumerate : {m : ℕ} {A : Set} → (as : Vec A m) → map (denumerate as) (enumerate as) ≡ as
+lemma-map-denumerate-enumerate : {m : ℕ} → (as : Vec Carrier m) → map (denumerate as) (enumerate as) ≡ as
lemma-map-denumerate-enumerate [] = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
map (flip lookupVec (a ∷ as)) (tabulate Fin.suc)
@@ -167,15 +167,15 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
≡⟨ lemma-map-denumerate-enumerate as ⟩
as ∎)
-theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get deq s (get s) ≡ just s
+theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get s (get s) ≡ just s
theorem-1 get s = begin
- bff get deq s (get s)
- ≡⟨ cong (bff get deq s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
- bff get deq s (get (map (denumerate s) (enumerate s)))
- ≡⟨ cong (bff get deq s) (free-theorem get (denumerate s) (enumerate s)) ⟩
- bff get deq s (map (denumerate s) (get (enumerate s)))
+ bff get s (get s)
+ ≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
+ bff get s (get (map (denumerate s) (enumerate s)))
+ ≡⟨ cong (bff get s) (free-theorem get (denumerate s) (enumerate s)) ⟩
+ bff get s (map (denumerate s) (get (enumerate s)))
≡⟨ refl ⟩
- fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (assoc deq (get (enumerate s)) (map (denumerate s) (get (enumerate s)))))
+ fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s)))))
≡⟨ cong (fmap (flip map (enumerate s) ∘ flip lookup) ∘ fmap (flip union (fromFunc (denumerate s)))) (lemma-1 (denumerate s) (get (enumerate s))) ⟩
fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (flip lookupVec s))) (just (restrict (denumerate s) (toList (get (enumerate s))))))
≡⟨ refl ⟩
@@ -220,8 +220,8 @@ lemma-union-not-used h h' (i ∷ is') p | x , lookupM-i-h≡just-x = begin
≡⟨ cong (_∷_ (lookupM i h)) (lemma-union-not-used h h' is' (Data.List.All.tail p)) ⟩
lookupM i h ∷ map (flip lookupM h) is' ∎
-theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get deq s v ≡ just u → get u ≡ v
-theorem-2 get v s u p with lemma-fmap-just (assoc deq (get (enumerate s)) v) (proj₂ (lemma-fmap-just (fmap (flip union (fromFunc (denumerate s))) (assoc deq (get (enumerate s)) v)) p))
+theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → get u ≡ v
+theorem-2 get v s u p with lemma-fmap-just (assoc (get (enumerate s)) v) (proj₂ (lemma-fmap-just (fmap (flip union (fromFunc (denumerate s))) (assoc (get (enumerate s)) v)) p))
theorem-2 get v s u p | h , ph = begin
get u
≡⟨ lemma-from-just (begin
@@ -229,7 +229,7 @@ theorem-2 get v s u p | h , ph = begin
≡⟨ refl ⟩
fmap get (just u)
≡⟨ cong (fmap get) (sym p) ⟩
- fmap get (bff get deq s v)
+ fmap get (bff get s v)
≡⟨ cong (fmap get ∘ fmap (flip map (enumerate s) ∘ flip lookup) ∘ fmap (flip union (fromFunc (denumerate s)))) ph ⟩
fmap get (fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (just h)))
≡⟨ refl ⟩
diff --git a/Precond.agda b/Precond.agda
index 7976b0a..5011e41 100644
--- a/Precond.agda
+++ b/Precond.agda
@@ -20,13 +20,13 @@ open import BFF using (fmap ; _>>=_)
import Bidir
open Bidir Carrier deq using (lemma-∉-lookupM-assoc)
-open BFF.VecBFF using (get-type ; assoc ; enumerate ; denumerate ; bff)
+open BFF.VecBFF Carrier deq using (get-type ; assoc ; enumerate ; denumerate ; bff)
-assoc-enough : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → (v : Vec Carrier (getlen m)) → (h : FinMapMaybe m Carrier) → assoc deq (get (enumerate s)) v ≡ just h → ∃ λ u → bff get deq s v ≡ just u
+assoc-enough : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → (v : Vec Carrier (getlen m)) → (h : FinMapMaybe m Carrier) → assoc (get (enumerate s)) v ≡ just h → ∃ λ u → bff get s v ≡ just u
assoc-enough get {m} s v h p = map (flip lookup (union h g)) s′ , (begin
- bff get deq s v
+ bff get s v
≡⟨ refl ⟩
- fmap (flip map s′ ∘ flip lookup) (fmap (flip union g) (assoc deq (get s′) v))
+ fmap (flip map s′ ∘ flip lookup) (fmap (flip union g) (assoc (get s′) v))
≡⟨ cong (fmap (flip map s′ ∘ flip lookup)) (cong (fmap (flip union g)) p) ⟩
fmap (flip map s′ ∘ flip lookup) (fmap (flip union g) (just h))
≡⟨ refl ⟩
@@ -61,13 +61,13 @@ different-∉ x [] p ()
different-∉ x (y ∷ ys) p (here px) = p zero (suc zero) (λ ()) px
different-∉ x (y ∷ ys) p (there pxs) = different-∉ x ys (different-drop y (x ∷ ys) (different-swap x y ys p)) pxs
-different-assoc : {m n : ℕ} → (u : Vec (Fin n) m) → (v : Vec Carrier m) → all-different u → ∃ λ h → assoc deq u v ≡ just h
+different-assoc : {m n : ℕ} → (u : Vec (Fin n) m) → (v : Vec Carrier m) → all-different u → ∃ λ h → assoc u v ≡ just h
different-assoc [] [] p = empty , refl
different-assoc (u ∷ us) (v ∷ vs) p with different-assoc us vs (λ i j i≢j → p (suc i) (suc j) (i≢j ∘ suc-injective))
different-assoc (u ∷ us) (v ∷ vs) p | h , p' = insert u v h , (begin
- assoc deq (u ∷ us) (v ∷ vs)
+ assoc (u ∷ us) (v ∷ vs)
≡⟨ refl ⟩
- assoc deq us vs >>= checkInsert deq u v
+ assoc us vs >>= checkInsert deq u v
≡⟨ cong (flip _>>=_ (checkInsert deq u v)) p' ⟩
checkInsert deq u v h
≡⟨ lemma-checkInsert-new deq u v h (lemma-∉-lookupM-assoc u us vs h p' (different-∉ u us p)) ⟩