diff options
-rw-r--r-- | Bidir.agda | 15 |
1 files changed, 11 insertions, 4 deletions
@@ -52,10 +52,6 @@ assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing ---data Equal? where --- same ... --- different ... - generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A generate f [] = empty generate f (n ∷ ns) = insert n (f n) (generate f ns) @@ -64,3 +60,14 @@ generate f (n ∷ ns) = insert n (f n) (generate f ns) lemma-1 : {τ : Set} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) = {!!} + +idrange : ℕ → List ℕ +idrange zero = [] +idrange (suc n) = zero ∷ (map suc (idrange n)) + +bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B)) +bff get eq s v = let s′ = idrange (length s) + g = fromAscList (zip s′ s) + h = assoc eq (get s′) v + h′ = maybe′ (λ jh → just (union jh g)) nothing h + in maybe′ (λ jh′ → just (map {!!} s′)) nothing h′ |