diff options
-rw-r--r-- | Bidir.agda | 11 |
1 files changed, 7 insertions, 4 deletions
@@ -5,13 +5,16 @@ open import Data.Nat open import Data.Fin open import Data.Maybe open import Data.List hiding (replicate) -open import Data.Vec hiding (map ; zip) renaming (lookup to lookupVec) +open import Data.Vec hiding (map ; zip ; _>>=_) renaming (lookup to lookupVec) open import Data.Product hiding (zip ; map) open import Function open import Relation.Nullary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality +_>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B +_>>=_ = flip (flip maybe′ nothing) + module FinMap where FinMapMaybe : â„• → Set → Set @@ -56,7 +59,7 @@ checkInsert eq i b m | nothing = just (insert i b m) assoc : {A : Set} {n : â„•} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) assoc _ [] [] = just empty -assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) +assoc eq (i ∷ is) (b ∷ bs) = (assoc eq is bs) >>= (checkInsert eq i b) assoc _ _ _ = nothing generate : {A : Set} {n : â„•} → (Fin n → A) → List (Fin n) → FinMapMaybe n A @@ -93,8 +96,8 @@ bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B â bff get eq s v = let s′ = idrange (length s) g = fromFunc (λ f → lookupVec f (fromList s)) h = assoc eq (get s′) v - h′ = maybe′ (λ jh → just (union jh g)) nothing h - in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′ + h′ = h >>= (λ jh → just (union jh g)) + in h′ >>= (λ jh′ → just (map (flip lookup jh′) s′)) theorem-1 : (get : {α : Set} → List α → List α) → {Ï„ : Set} → (eq : EqInst Ï„) → (s : List Ï„) → bff get eq s (get s) ≡ just s theorem-1 get eq s = {!!} |