summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Examples.agda20
1 files changed, 19 insertions, 1 deletions
diff --git a/Examples.agda b/Examples.agda
index f30faa5..cfe9432 100644
--- a/Examples.agda
+++ b/Examples.agda
@@ -1,19 +1,25 @@
module Examples where
+open import Data.Maybe using (just ; nothing)
open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; ⌈_/2⌉)
open import Data.Nat.Properties using (cancel-+-left)
import Algebra.Structures
open import Data.List using (List ; length) renaming ([] to []L ; _∷_ to _∷L_)
-open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_ ; tail ; take ; drop)
+open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_ ; tail ; take ; drop ; map)
open import Function using (id)
+import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong)
open import Structures using (Shaped)
import GetTypes
import FreeTheorems
+import BFF
open GetTypes.PartialVecVec using (Get)
open FreeTheorems.PartialVecVec using (assume-get)
+open BFF.PartialVecBFF using (bff)
+
+ℕ-decSetoid = Relation.Binary.DecTotalOrder.Eq.decSetoid Data.Nat.decTotalOrder
reverse' : Get
reverse' = assume-get id id reverse
@@ -33,6 +39,9 @@ double'' = assume-get id _ (λ v → v ++ v)
tail' : Get
tail' = assume-get suc id tail
+tail-example : bff ℕ-decSetoid tail' 2 (8 ∷ 5 ∷ []) (3 ∷ 1 ∷ []) ≡ just (just 8 ∷ just 3 ∷ just 1 ∷ [])
+tail-example = refl
+
take' : ℕ → Get
take' n = assume-get (_+_ n) _ (take n)
@@ -46,6 +55,9 @@ sieve' = assume-get id _ f
f (x ∷ []) = x ∷ []
f (x ∷ _ ∷ xs) = x ∷ f xs
+sieve-example : bff ℕ-decSetoid sieve' 4 (0 ∷ 2 ∷ []) (1 ∷ 3 ∷ []) ≡ just (just 1 ∷ just 2 ∷ just 3 ∷ nothing ∷ [])
+sieve-example = refl
+
intersperse-len : ℕ → ℕ
intersperse-len zero = zero
intersperse-len (suc zero) = suc zero
@@ -61,6 +73,12 @@ intersperse' = assume-get suc intersperse-len f
where f : {A : Set} {n : ℕ} → Vec A (suc n) → Vec A (intersperse-len n)
f (s ∷ v) = intersperse s v
+intersperse-neg-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ nothing
+intersperse-neg-example = refl
+
+intersperse-pos-example : bff ℕ-decSetoid intersperse' 3 (0 ∷ []) (1 ∷ 2 ∷ 3 ∷ 2 ∷ 5 ∷ []) ≡ just (map just (2 ∷ 1 ∷ 3 ∷ 5 ∷ []))
+intersperse-pos-example = refl
+
data PairVec (α : Set) (β : Set) : List α → Set where
[]P : PairVec α β []L
_,_∷P_ : (x : α) → β → {l : List α} → PairVec α β l → PairVec α β (x ∷L l)