diff options
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 8 |
1 files changed, 4 insertions, 4 deletions
@@ -47,13 +47,13 @@ lemma-checkInsert-restrict eq f i is | just .(f i) | Reveal_is_.[_] prf | refl | lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (restrict f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) = begin - (assoc eq (i ∷ is′) (map f (i ∷ is′))) + assoc eq (i ∷ is′) (map f (i ∷ is′)) ≡⟨ refl ⟩ - (assoc eq is′ (map f is′) >>= checkInsert eq i (f i)) + assoc eq is′ (map f is′) >>= checkInsert eq i (f i) ≡⟨ cong (λ m → m >>= checkInsert eq i (f i)) (lemma-1 eq f is′) ⟩ - (just (restrict f is′) >>= (checkInsert eq i (f i))) + just (restrict f is′) >>= (checkInsert eq i (f i)) ≡⟨ refl ⟩ - (checkInsert eq i (f i) (restrict f is′)) + checkInsert eq i (f i) (restrict f is′) ≡⟨ lemma-checkInsert-restrict eq f i is′ ⟩ just (restrict f (i ∷ is′)) ∎ |