diff options
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 238 |
1 files changed, 156 insertions, 82 deletions
@@ -13,7 +13,7 @@ open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_) open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_) open import Data.List using (List) open import Data.List.All using (All) -open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map) renaming (lookup to lookupVec) +open import Data.Vec using (Vec ; [] ; _∷_ ; toList ; map ; allFin) renaming (lookup to lookupVec) open import Data.Vec.Equality using () renaming (module Equality to VecEq) open import Data.Vec.Properties using (lookup∘tabulate ; map-cong ; map-∘ ; map-lookup-allFin) open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) @@ -24,14 +24,16 @@ open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid) import Relation.Binary.EqReasoning as EqR +open import Structures using (Functor ; IsFunctor ; Shaped ; module Shaped) +open import Instances using (MaybeFunctor ; ShapedISetoid) import GetTypes -open GetTypes.PartialVecVec using (Get ; module Get) +open GetTypes.PartialShapeShape using (Get ; module Get) open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid ; just-injective) open import FinMap import CheckInsert open CheckInsert A import BFF -open BFF.PartialVecBFF A using (assoc ; enumerate ; enumeratel ; denumerate ; bff) +open BFF.PartialShapeBFF A using (assoc ; enumerate ; denumerate ; bff) open Setoid using () renaming (_≈_ to _∋_≈_) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) @@ -107,38 +109,53 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin just x ∷ map just xs ∎ where open EqR (VecISetoid (MaybeSetoid A.setoid) at _) -theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (map just s) +lemma-fmap-denumerate-enumerate : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {α : Set} {s : S} → (c : C α s) → Shaped.fmap ShapeT (denumerate ShapeT c) (enumerate ShapeT s) ≡ c +lemma-fmap-denumerate-enumerate {S} {C} ShapeT {s = s} c = begin + fmap (denumerate ShapeT c) (fill s (allFin (arity s))) + ≡⟨ fill-fmap (denumerate ShapeT c) s (allFin (arity s)) ⟩ + fill s (map (flip lookupVec (content c)) (allFin (arity s))) + ≡⟨ cong (fill s) (map-lookup-allFin (content c)) ⟩ + fill s (content c) + ≡⟨ content-fill c ⟩ + c ∎ + where open ≡-Reasoning + open Shaped ShapeT + + +theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Get.SourceContainer G Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (Get.fmapS G just s) theorem-1 G {i} s = begin bff G i s (get s) - ≡⟨ cong (bff G i s ∘ get) (sym (map-lookup-allFin s)) ⟩ - bff G i s (get (map f t)) + ≡⟨ cong (bff G i s ∘ get) (sym (lemma-fmap-denumerate-enumerate SourceShapeT s)) ⟩ + bff G i s (get (fmapS f t)) ≡⟨ cong (bff G i s) (free-theorem f t) ⟩ - bff G i s (map f (get t)) + bff G i s (fmapV f (get t)) ≡⟨ refl ⟩ - h′↦r <$> (h↦h′ <$> (assoc (get t) (map f (get t)))) - ≡⟨ cong (_<$>_ h′↦r ∘ _<$>_ h↦h′) (lemma-1 f (get t)) ⟩ - (Maybe.just ∘ h′↦r ∘ h↦h′) (restrict f (toList (get t))) + h′↦r <$> (h↦h′ <$> (assoc (Shaped.content ViewShapeT (get t)) (Shaped.content ViewShapeT (fmapV f (get t))))) + ≡⟨ cong (_<$>_ h′↦r ∘ _<$>_ h↦h′ ∘ assoc (Shaped.content ViewShapeT (get t))) (Shaped.fmap-content ViewShapeT f (get t)) ⟩ + h′↦r <$> (h↦h′ <$> (assoc (Shaped.content ViewShapeT (get t)) (map f (Shaped.content ViewShapeT (get t))))) + ≡⟨ cong (_<$>_ h′↦r ∘ _<$>_ h↦h′) (lemma-1 f (Shaped.content ViewShapeT (get t))) ⟩ + (Maybe.just ∘ h′↦r ∘ h↦h′) (restrict f (toList (Shaped.content ViewShapeT (get t)))) ≡⟨ cong just (begin - h′↦r (union (restrict f (toList (get t))) (reshape g′ (|gl₁| i))) - ≡⟨ cong (h′↦r ∘ union (restrict f (toList (get t)))) (lemma-reshape-id g′) ⟩ - h′↦r (union (restrict f (toList (get t))) g′) - ≡⟨ cong h′↦r (lemma-disjoint-union f (get t)) ⟩ + h′↦r (union (restrict f (toList (Shaped.content ViewShapeT (get t)))) (reshape g′ (Shaped.arity SourceShapeT (|gl₁| i)))) + ≡⟨ cong (h′↦r ∘ union (restrict f (toList (Shaped.content ViewShapeT (get t))))) (lemma-reshape-id g′) ⟩ + h′↦r (union (restrict f (toList (Shaped.content ViewShapeT (get t)))) g′) + ≡⟨ cong h′↦r (lemma-disjoint-union f (Shaped.content ViewShapeT (get t))) ⟩ h′↦r (fromFunc f) ≡⟨ refl ⟩ - map (flip lookupM (fromFunc f)) t - ≡⟨ map-cong (lemma-lookupM-fromFunc f) t ⟩ - map (Maybe.just ∘ f) t - ≡⟨ map-∘ just f t ⟩ - map just (map f t) - ≡⟨ cong (map just) (map-lookup-allFin s) ⟩ - map just s ∎) ⟩ _ ∎ + fmapS (flip lookupM (fromFunc f)) t + ≡⟨ IsFunctor.cong (Shaped.isFunctor SourceShapeT (|gl₁| i)) (lemma-lookupM-fromFunc f) t ⟩ + fmapS (Maybe.just ∘ f) t + ≡⟨ IsFunctor.composition (Shaped.isFunctor SourceShapeT (|gl₁| i)) just f t ⟩ + fmapS just (fmapS f t) + ≡⟨ cong (fmapS just) (lemma-fmap-denumerate-enumerate SourceShapeT s) ⟩ + fmapS just s ∎) ⟩ _ ∎ where open ≡-Reasoning open Get G - t = enumeratel (|gl₁| i) - f = denumerate s - g′ = delete-many (get t) (fromFunc f) - h↦h′ = flip union (reshape g′ (|gl₁| i)) - h′↦r = flip map t ∘ flip lookupM + t = enumerate SourceShapeT (|gl₁| i) + f = denumerate SourceShapeT s + g′ = delete-many (Shaped.content ViewShapeT (get t)) (fromFunc f) + h↦h′ = flip union (reshape g′ (Shaped.arity SourceShapeT (|gl₁| i))) + h′↦r = (λ f′ → fmapS f′ t) ∘ flip lookupM lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a @@ -162,9 +179,21 @@ lemma->>=-just : {A B : Set} (ma : Maybe A) {f : A → Maybe B} {b : B} → (ma lemma->>=-just (just a) p = a , refl lemma->>=-just nothing () -lemma-just-sequence : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v -lemma-just-sequence [] = refl -lemma-just-sequence (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequence xs) +lemma-just-sequenceV : {A : Set} {n : ℕ} → (v : Vec A n) → sequenceV (map just v) ≡ just v +lemma-just-sequenceV [] = refl +lemma-just-sequenceV (x ∷ xs) = cong (_<$>_ (_∷_ x)) (lemma-just-sequenceV xs) + +lemma-just-sequence : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {A : Set} {s : S} → (c : C A s) → Shaped.sequence ShapeT (Shaped.fmap ShapeT just c) ≡ just c +lemma-just-sequence ShapeT {s = s} c = begin + fill s <$> sequenceV (content (fmap just c)) + ≡⟨ cong (_<$>_ (fill s) ∘ sequenceV) (fmap-content just c) ⟩ + fill s <$> sequenceV (map just (content c)) + ≡⟨ cong (_<$>_ (fill s)) (lemma-just-sequenceV (content c)) ⟩ + fill s <$> just (content c) + ≡⟨ cong just (content-fill c) ⟩ + just c ∎ + where open ≡-Reasoning + open Shaped ShapeT lemma-sequenceV-successful : {A : Set} {n : ℕ} → (v : Vec (Maybe A) n) → {r : Vec A n} → sequenceV v ≡ just r → v ≡ map just r lemma-sequenceV-successful [] {r = []} p = refl @@ -173,66 +202,111 @@ lemma-sequenceV-successful (just x ∷ xs) () | nothing | _ lemma-sequenceV-successful (just x ∷ xs) {r = .x ∷ .ys} refl | just ys | [ p′ ] = cong (_∷_ (just x)) (lemma-sequenceV-successful xs p′) lemma-sequenceV-successful (nothing ∷ xs) () -lemma-get-sequenceV : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Vec (Maybe A) (Get.|gl₁| G i)} {r : Vec A (Get.|gl₁| G i)} → sequenceV v ≡ just r → Get.get G <$> sequenceV v ≡ sequenceV (Get.get G v) -lemma-get-sequenceV G {v = v} {r = r} p = begin - get <$> sequenceV v - ≡⟨ cong (_<$>_ get ∘ sequenceV) (lemma-sequenceV-successful v p) ⟩ - get <$> sequenceV (map just r) - ≡⟨ cong (_<$>_ get) (lemma-just-sequence r) ⟩ +lemma-sequence-successful : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → {A : Set} {s : S} → (c : C (Maybe A) s) → {r : C A s} → Shaped.sequence ShapeT c ≡ just r → c ≡ Shaped.fmap ShapeT just r +lemma-sequence-successful ShapeT {s = s} c {r} p = just-injective (sym (begin + fill s <$> (map just <$> (content <$> just r)) + ≡⟨ cong (_<$>_ (fill s) ∘ _<$>_ (map just)) (begin + content <$> just r + ≡⟨ cong (_<$>_ content) (sym p) ⟩ + content <$> (fill s <$> sequenceV (content c)) + ≡⟨ sym (Functor.composition MaybeFunctor content (fill s) (sequenceV (content c))) ⟩ + content ∘ fill s <$> sequenceV (content c) + ≡⟨ Functor.cong MaybeFunctor (fill-content s) (sequenceV (content c)) ⟩ + id <$> sequenceV (content c) + ≡⟨ Functor.identity MaybeFunctor (sequenceV (content c)) ⟩ + sequenceV (content c) + ≡⟨ cong sequenceV (lemma-sequenceV-successful (content c) (proj₂ wp)) ⟩ + sequenceV (map just (proj₁ wp)) + ≡⟨ lemma-just-sequenceV (proj₁ wp) ⟩ + just (proj₁ (lemma-<$>-just (sequenceV (content c)) p)) ∎) ⟩ + fill s <$> (map just <$> just (proj₁ (lemma-<$>-just (sequenceV (content c)) p))) + ≡⟨ cong (_<$>_ (fill s) ∘ just) (sym (lemma-sequenceV-successful (content c) (proj₂ wp))) ⟩ + fill s <$> just (content c) + ≡⟨ cong just (content-fill c) ⟩ + just c ∎)) + where open ≡-Reasoning + open Shaped ShapeT + wp = lemma-<$>-just (sequenceV (content c)) p + +lemma-get-sequence : {A : Set} → (G : Get) → {i : Get.|I| G} {v : Get.SourceContainer G (Maybe A) (Get.|gl₁| G i)} {r : Get.SourceContainer G A (Get.|gl₁| G i)} → Shaped.sequence (Get.SourceShapeT G) v ≡ just r → Get.get G <$> Shaped.sequence (Get.SourceShapeT G) v ≡ Shaped.sequence (Get.ViewShapeT G) (Get.get G v) +lemma-get-sequence G {v = v} {r = r} p = begin + get <$> Shaped.sequence SourceShapeT v + ≡⟨ cong (_<$>_ get ∘ Shaped.sequence SourceShapeT) (lemma-sequence-successful SourceShapeT v p) ⟩ + get <$> Shaped.sequence SourceShapeT (fmapS just r) + ≡⟨ cong (_<$>_ get) (lemma-just-sequence SourceShapeT r) ⟩ get <$> just r - ≡⟨ sym (lemma-just-sequence (get r)) ⟩ - sequenceV (map just (get r)) - ≡⟨ cong sequenceV (sym (free-theorem just r)) ⟩ - sequenceV (get (map just r)) - ≡⟨ cong (sequenceV ∘ get) (sym (lemma-sequenceV-successful v p)) ⟩ - sequenceV (get v) ∎ + ≡⟨ sym (lemma-just-sequence ViewShapeT (get r)) ⟩ + Shaped.sequence ViewShapeT (fmapV just (get r)) + ≡⟨ cong (Shaped.sequence ViewShapeT) (sym (free-theorem just r)) ⟩ + Shaped.sequence ViewShapeT (get (fmapS just r)) + ≡⟨ cong (Shaped.sequence ViewShapeT ∘ get) (sym (lemma-sequence-successful SourceShapeT v p)) ⟩ + Shaped.sequence ViewShapeT (get v) ∎ where open ≡-Reasoning open Get G -sequence-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → VecISetoid (MaybeSetoid S) at _ ∋ m₁ ≈ m₂ → MaybeSetoid (VecISetoid S at n) ∋ sequenceV m₁ ≈ sequenceV m₂ -sequence-cong {S} VecEq.[]-cong = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) with sequenceV xs | sequenceV ys | sequence-cong xs≈ys -sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | just sys | just p = MaybeEq.just (VecEq._∷-cong_ x≈y p) -sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | just sys | () -sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | nothing | () -sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) - -theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v -theorem-2 G j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p) -theorem-2 G j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v) ph′) -theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩ - get u - ≡⟨ just-injective (trans (cong (_<$>_ get) (sym p)) - (cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph)) ⟩ - get (h′↦r (h↦h′ h)) +sequenceV-cong : {S : Setoid ℓ₀ ℓ₀} {n : ℕ} {m₁ m₂ : Setoid.Carrier (VecISetoid (MaybeSetoid S) at n)} → VecISetoid (MaybeSetoid S) at _ ∋ m₁ ≈ m₂ → MaybeSetoid (VecISetoid S at n) ∋ sequenceV m₁ ≈ sequenceV m₂ +sequenceV-cong {S} VecEq.[]-cong = Setoid.refl (MaybeSetoid (VecISetoid S at _)) +sequenceV-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) with sequenceV xs | sequenceV ys | sequenceV-cong xs≈ys +sequenceV-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | just sys | just p = MaybeEq.just (VecEq._∷-cong_ x≈y p) +sequenceV-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | just sys | () +sequenceV-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | just sxs | nothing | () +sequenceV-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) +sequenceV-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) + +sequence-cong : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → (α : Setoid ℓ₀ ℓ₀) → {s : S} {x y : C (Maybe (Setoid.Carrier α)) s} → ShapedISetoid (EqSetoid S) ShapeT (MaybeSetoid α) at _ ∋ x ≈ y → MaybeSetoid (ShapedISetoid (EqSetoid S) ShapeT α at _) ∋ Shaped.sequence ShapeT x ≈ Shaped.sequence ShapeT y +sequence-cong ShapeT α {x = x} {y = y} (shape≈ , content≈) with sequenceV (Shaped.content ShapeT x) | sequenceV (Shaped.content ShapeT y) | sequenceV-cong content≈ +sequence-cong ShapeT α {s} (shape≈ , content≈) | .(just x) | .(just y) | just {x} {y} x≈y = just (refl , (begin + content (fill s x) + ≡⟨ fill-content s x ⟩ + x + ≈⟨ x≈y ⟩ + y + ≡⟨ sym (fill-content s y) ⟩ + content (fill s y) ∎)) + where open EqR (VecISetoid α at _) + open Shaped ShapeT +sequence-cong ShapeT α (shape≈ , content≈) | .nothing | .nothing | nothing = nothing + +theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.SourceContainer G Carrier (Get.|gl₁| G i)) → (v : Get.ViewContainer G Carrier (Get.|gl₂| G j)) → (u : Get.SourceContainer G (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → ShapedISetoid (EqSetoid _) (Get.ViewShapeT G) (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ Get.fmapV G just v +theorem-2 G {i} j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Shaped.content (Get.ViewShapeT G) (Get.get G (enumerate (Get.SourceShapeT G) (Get.|gl₁| G i)))) (fromFunc (denumerate (Get.SourceShapeT G) s))) (Shaped.arity (Get.SourceShapeT G) (Get.|gl₁| G j)))) <$> (assoc (Shaped.content (Get.ViewShapeT G) (Get.get G (enumerate (Get.SourceShapeT G) (Get.|gl₁| G j)))) (Shaped.content (Get.ViewShapeT G) v))) p) +theorem-2 G {i} j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Shaped.content (Get.ViewShapeT G) (Get.get G (enumerate (Get.SourceShapeT G) (Get.|gl₁| G j)))) (Shaped.content (Get.ViewShapeT G) v)) ph′) +theorem-2 G {i} j s v u p | h′ , ph′ | h , ph = refl , (begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩ + content (get u) + ≡⟨ cong content (just-injective (trans (cong (_<$>_ get) (sym p)) + (cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph))) ⟩ + content (get (h′↦r (h↦h′ h))) ≡⟨ refl ⟩ - get (map (flip lookupM (h↦h′ h)) t) - ≡⟨ free-theorem (flip lookupM (h↦h′ h)) t ⟩ - map (flip lookupM (h↦h′ h)) (get t) - ≡⟨ lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph) ⟩ - map (flip lookupM h) (get t) - ≈⟨ lemma-2 (get t) v h ph ⟩ - map just v ∎ + content (get (fmapS (flip lookupM (h↦h′ h)) t)) + ≡⟨ cong content (free-theorem (flip lookupM (h↦h′ h)) t) ⟩ + content (fmapV (flip lookupM (h↦h′ h)) (get t)) + ≡⟨ Shaped.fmap-content ViewShapeT (flip lookupM (h↦h′ h)) (get t) ⟩ + map (flip lookupM (h↦h′ h)) (content (get t)) + ≡⟨ lemma-union-not-used h g′ (content (get t)) (lemma-assoc-domain (content (get t)) (content v) h ph) ⟩ + map (flip lookupM h) (content (get t)) + ≈⟨ lemma-2 (content (get t)) (content v) h ph ⟩ + map just (content v) + ≡⟨ sym (Shaped.fmap-content ViewShapeT just v) ⟩ + content (fmapV just v) ∎) where open SetoidReasoning open Get G - s′ = enumerate s - g = fromFunc (denumerate s) - g′ = delete-many (get s′) g - t = enumeratel (Get.|gl₁| G j) - h↦h′ = flip union (reshape g′ (Get.|gl₁| G j)) - h′↦r = flip map t ∘ flip lookupM - -theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (map just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v + open Shaped ViewShapeT using (content) + s′ = enumerate SourceShapeT (|gl₁| i) + g = fromFunc (denumerate SourceShapeT s) + g′ = delete-many (Shaped.content ViewShapeT (get s′)) g + t = enumerate SourceShapeT (|gl₁| j) + h↦h′ = flip union (reshape g′ (Shaped.arity SourceShapeT (|gl₁| j))) + h′↦r = (λ f → fmapS f t) ∘ flip lookupM + +theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Get.SourceContainer G Carrier (Get.|gl₁| G i)) → (v : Get.ViewContainer G Carrier (Get.|gl₂| G j)) → (u : Get.SourceContainer G Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (Get.fmapS G just u) → ShapedISetoid (EqSetoid _) (Get.ViewShapeT G) A.setoid at _ ∋ Get.get G u ≈ v theorem-2′ G j s v u p = drop-just (begin get <$> just u - ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence u)) ⟩ - get <$> sequenceV (map just u) - ≡⟨ lemma-get-sequenceV G (lemma-just-sequence u) ⟩ - sequenceV (get (map just u)) - ≈⟨ sequence-cong (theorem-2 G j s v (map just u) p) ⟩ - sequenceV (map just v) - ≡⟨ lemma-just-sequence v ⟩ + ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence SourceShapeT u)) ⟩ + get <$> Shaped.sequence SourceShapeT (fmapS just u) + ≡⟨ lemma-get-sequence G (lemma-just-sequence SourceShapeT u) ⟩ + Shaped.sequence ViewShapeT (get (fmapS just u)) + ≈⟨ sequence-cong ViewShapeT A.setoid (theorem-2 G j s v (fmapS just u) p) ⟩ + Shaped.sequence ViewShapeT (fmapV just v) + ≡⟨ lemma-just-sequence ViewShapeT v ⟩ just v ∎) - where open EqR (MaybeSetoid (VecISetoid A.setoid at _)) - open Get G + where open Get G + open EqR (MaybeSetoid (ShapedISetoid (EqSetoid _) ViewShapeT A.setoid at _)) |