summaryrefslogtreecommitdiff
path: root/CheckInsert.agda
diff options
context:
space:
mode:
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r--CheckInsert.agda39
1 files changed, 19 insertions, 20 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda
index 316d8b1..6a1300b 100644
--- a/CheckInsert.agda
+++ b/CheckInsert.agda
@@ -13,9 +13,8 @@ open import Data.Vec.Properties using (lookup∘update′)
open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Setoid ; module DecSetoid)
-open import Relation.Binary.Core using (refl ; _≡_ ; _≢_)
import Relation.Binary.EqReasoning as EqR
-open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans)
+open import Relation.Binary.PropositionalEquality as P using (_≡_ ; _≢_ ; inspect ; [_] ; module ≡-Reasoning)
open import FinMap
@@ -43,44 +42,44 @@ insertionresult i x h | nothing | [ il ] = new il
lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m
lemma-checkInsert-same i x m p with lookupM i m
-lemma-checkInsert-same i x m refl | .(just x) with deq x x
-lemma-checkInsert-same i x m refl | .(just x) | yes x≈x = refl
-lemma-checkInsert-same i x m refl | .(just x) | no x≉x = contradiction A.refl x≉x
+lemma-checkInsert-same i x m P.refl | .(just x) with deq x x
+lemma-checkInsert-same i x m P.refl | .(just x) | yes x≈x = P.refl
+lemma-checkInsert-same i x m P.refl | .(just x) | no x≉x = contradiction A.refl x≉x
lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m)
lemma-checkInsert-new i x m p with lookupM i m
-lemma-checkInsert-new i x m refl | .nothing = refl
+lemma-checkInsert-new i x m P.refl | .nothing = P.refl
lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → ¬ (x ≈ x') → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
lemma-checkInsert-wrong i x m x' d p with lookupM i m
-lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x'
-lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d
-lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl
+lemma-checkInsert-wrong i x m x' d P.refl | .(just x') with deq x x'
+lemma-checkInsert-wrong i x m x' d P.refl | .(just x') | yes q = contradiction q d
+lemma-checkInsert-wrong i x m x' d P.refl | .(just x') | no ¬q = P.refl
lemma-checkInsert-restrict : {n m : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : Vec (Fin n) m) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷V is))
lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is)
-lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = cong just (lemma-insert-same _ i (trans p (cong just (sym (lemma-lookupM-restrict i f is p)))))
-lemma-checkInsert-restrict f i is | ._ | new _ = refl
+lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = P.cong just (lemma-insert-same _ i (P.trans p (P.cong just (P.sym (lemma-lookupM-restrict i f is p)))))
+lemma-checkInsert-restrict f i is | ._ | new _ = P.refl
lemma-checkInsert-restrict f i is | ._ | wrong x fi≉x p = contradiction (Setoid.reflexive A.setoid (lemma-lookupM-restrict i f is p)) fi≉x
lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (h : FinMapMaybe n Carrier) → {x : Carrier} → lookupM i h ≡ just x → (y : Carrier) → {h' : FinMapMaybe n Carrier} → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x
lemma-lookupM-checkInsert i j h pl y ph' with checkInsert j y h | insertionresult j y h
-lemma-lookupM-checkInsert i j h pl y refl | ._ | same _ _ _ = pl
-lemma-lookupM-checkInsert i j h pl y ph' | ._ | new _ with i ≟ j
-lemma-lookupM-checkInsert i .i h pl y ph' | ._ | new pl' | yes refl = contradiction (trans (sym pl) pl') (λ ())
-lemma-lookupM-checkInsert i j h {x} pl y refl | ._ | new _ | no i≢j = begin
+lemma-lookupM-checkInsert i j h pl y P.refl | ._ | same _ _ _ = pl
+lemma-lookupM-checkInsert i j h pl y ph' | ._ | new _ with i ≟ j
+lemma-lookupM-checkInsert i .i h pl y ph' | ._ | new pl' | yes P.refl = contradiction (P.trans (P.sym pl) pl') (λ ())
+lemma-lookupM-checkInsert i j h {x} pl y P.refl | ._ | new _ | no i≢j = begin
lookupM i (insert j y h)
≡⟨ lookup∘update′ i≢j h (just y) ⟩
lookupM i h
≡⟨ pl ⟩
just x ∎
- where open Relation.Binary.PropositionalEquality.≡-Reasoning
+ where open ≡-Reasoning
lemma-lookupM-checkInsert i j h pl y () | ._ | wrong _ _ _
lemma-lookupM-checkInsert-other : {n : ℕ} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h : FinMapMaybe n Carrier) → {h' : FinMapMaybe n Carrier} → checkInsert j x h ≡ just h' → lookupM i h' ≡ lookupM i h
lemma-lookupM-checkInsert-other i j i≢j x h ph' with lookupM j h
-lemma-lookupM-checkInsert-other i j i≢j x h ph' | just y with deq x y
-lemma-lookupM-checkInsert-other i j i≢j x h refl | just y | yes x≈y = refl
-lemma-lookupM-checkInsert-other i j i≢j x h () | just y | no x≉y
-lemma-lookupM-checkInsert-other i j i≢j x h refl | nothing = lookup∘update′ i≢j h (just x)
+lemma-lookupM-checkInsert-other i j i≢j x h ph' | just y with deq x y
+lemma-lookupM-checkInsert-other i j i≢j x h P.refl | just y | yes x≈y = P.refl
+lemma-lookupM-checkInsert-other i j i≢j x h () | just y | no x≉y
+lemma-lookupM-checkInsert-other i j i≢j x h P.refl | nothing = lookup∘update′ i≢j h (just x)