summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda16
1 files changed, 10 insertions, 6 deletions
diff --git a/FinMap.agda b/FinMap.agda
index c125c47..c04c510 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -1,21 +1,25 @@
module FinMap where
+open import Level using () renaming (zero to ℓ₀)
open import Data.Nat using (ℕ ; zero ; suc)
-open import Data.Maybe using (Maybe ; just ; nothing ; maybe′)
+open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) renaming (setoid to MaybeEq)
open import Data.Fin using (Fin ; zero ; suc)
open import Data.Fin.Props using (_≟_)
open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; toList) renaming (lookup to lookupVec ; map to mapV)
+open import Data.Vec.Equality using ()
+open Data.Vec.Equality.Equality using (_∷-cong_)
open import Data.Vec.Properties using (lookup∘tabulate)
open import Data.List using (List ; [] ; _∷_ ; map ; zip)
open import Data.Product using (_×_ ; _,_)
open import Function using (id ; _∘_ ; flip ; const)
open import Relation.Nullary using (yes ; no)
open import Relation.Nullary.Negation using (contradiction)
+open import Relation.Binary using (Setoid ; module Setoid)
open import Relation.Binary.Core using (_≡_ ; refl ; _≢_)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans ; cong₂)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
-open import Generic using (just-injective)
+open import Generic using (just-injective ; vecIsSetoid)
FinMapMaybe : ℕ → Set → Set
FinMapMaybe n A = Vec (Maybe A) n
@@ -51,10 +55,10 @@ delete-many = flip (foldr (const _) delete)
lemma-just≢nothing : {A Whatever : Set} {a : A} {ma : Maybe A} → ma ≡ just a → ma ≡ nothing → Whatever
lemma-just≢nothing refl ()
-lemma-insert-same : {τ : Set} {n : ℕ} → (m : FinMapMaybe n τ) → (f : Fin n) → (a : τ) → lookupM f m ≡ just a → m ≡ insert f a m
-lemma-insert-same [] () a p
-lemma-insert-same (.(just a) ∷ xs) zero a refl = refl
-lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
+lemma-insert-same : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → (f : Fin n) → (a : A) → lookupM f m ≡ just a → m ≡ insert f a m
+lemma-insert-same [] () a p
+lemma-insert-same {suc n} (x ∷ xs) zero a p = cong (flip _∷_ xs) p
+lemma-insert-same (x ∷ xs) (suc i) a p = cong (_∷_ x) (lemma-insert-same xs i a p)
lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing
lemma-lookupM-empty zero = refl