summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda22
1 files changed, 16 insertions, 6 deletions
diff --git a/FinMap.agda b/FinMap.agda
index ea4f49b..240bbe1 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -40,6 +40,11 @@ fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs)
fromFunc : {A : Set} {n : ℕ} → (Fin n → A) → FinMapMaybe n A
fromFunc = mapV just ∘ tabulate
+reshape : {n : ℕ} {A : Set} → FinMapMaybe n A → (l : ℕ) → FinMapMaybe l A
+reshape m zero = []
+reshape [] (suc l) = nothing ∷ (reshape [] l)
+reshape (x ∷ xs) (suc l) = x ∷ (reshape xs l)
+
union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMapMaybe n A → FinMapMaybe n A
union m1 m2 = tabulate (λ f → maybe′ just (lookupM f m2) (lookupM f m1))
@@ -94,17 +99,24 @@ lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g →
lemma-tabulate-∘ {zero} {_} {f} {g} f≗g = refl
lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = cong₂ _∷_ (f≗g zero) (lemma-tabulate-∘ (f≗g ∘ suc))
-lemma-fromFunc-tabulate : {n : ℕ} {A : Set} → (f : Fin n → A) → fromFunc f ≡ tabulate (just ∘ f)
+lemma-lookupM-fromFunc : {n : ℕ} {A : Set} → (f : Fin n → A) → flip lookupM (fromFunc f) ≗ just ∘ f
+lemma-lookupM-fromFunc f zero = refl
+lemma-lookupM-fromFunc f (suc i) = lemma-lookupM-fromFunc (f ∘ suc) i
+
+lemma-fromFunc-tabulate : {n : ℕ} {A : Set} → (f : Fin n → A) → fromFunc f ≡ tabulate (Maybe.just ∘ f)
lemma-fromFunc-tabulate {zero} f = refl
lemma-fromFunc-tabulate {suc _} f = cong (_∷_ (just (f zero))) (lemma-fromFunc-tabulate (f ∘ suc))
lemma-lookupM-delete : {n : ℕ} {A : Set} {i j : Fin n} → (f : FinMapMaybe n A) → i ≢ j → lookupM i (delete j f) ≡ lookupM i f
-lemma-lookupM-delete {i = zero} {j = zero} (_ ∷ _) p with p refl
-... | ()
+lemma-lookupM-delete {i = zero} {j = zero} (_ ∷ _) p = contradiction refl p
lemma-lookupM-delete {i = zero} {j = suc j} (_ ∷ _) p = refl
lemma-lookupM-delete {i = suc i} {j = zero} (x ∷ xs) p = refl
lemma-lookupM-delete {i = suc i} {j = suc j} (x ∷ xs) p = lemma-lookupM-delete xs (p ∘ cong suc)
+lemma-reshape-id : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → reshape m n ≡ m
+lemma-reshape-id [] = refl
+lemma-reshape-id (x ∷ xs) = cong (_∷_ x) (lemma-reshape-id xs)
+
lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f (toList t)) (delete-many t (fromFunc f)) ≡ fromFunc f
lemma-disjoint-union {n} {m} f t = trans (lemma-tabulate-∘ (lemma-inner t)) (sym (lemma-fromFunc-tabulate f))
where lemma-inner : {m : ℕ} → (t : Vec (Fin n) m) → (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f (toList t))) ≡ just (f x)
@@ -112,9 +124,7 @@ lemma-disjoint-union {n} {m} f t = trans (lemma-tabulate-∘ (lemma-inner t)) (s
maybe′ just (lookupM x (fromFunc f)) (lookupM x empty)
≡⟨ cong (maybe′ just (lookupM x (fromFunc f))) (lemma-lookupM-empty x) ⟩
lookupM x (fromFunc f)
- ≡⟨ cong (lookupM x) (lemma-fromFunc-tabulate f) ⟩
- lookupM x (tabulate (just ∘ f))
- ≡⟨ lookup∘tabulate (just ∘ f) x ⟩
+ ≡⟨ lemma-lookupM-fromFunc f x ⟩
just (f x) ∎
lemma-inner (t ∷ ts) x with x ≟ t
lemma-inner (.x ∷ ts) x | yes refl = cong (maybe′ just (lookupM x (delete-many (x ∷ ts) (fromFunc f)))) (lemma-lookupM-insert x (f x) (restrict f (toList ts)))