diff options
Diffstat (limited to 'FinMap.agda')
-rw-r--r-- | FinMap.agda | 10 |
1 files changed, 3 insertions, 7 deletions
diff --git a/FinMap.agda b/FinMap.agda index df422c3..1ae4c39 100644 --- a/FinMap.agda +++ b/FinMap.agda @@ -6,7 +6,7 @@ open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Properties using (_≟_) open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip ; toList) renaming (lookup to lookupVec ; map to mapV) -open import Data.Vec.Properties using (lookup∘update ; lookup∘update′) +open import Data.Vec.Properties using (lookup∘update ; lookup∘update′ ; lookup-replicate) open import Data.Product using (_×_ ; _,_) open import Data.List.All as All using (All) import Data.List.All.Properties as AllP @@ -79,12 +79,8 @@ lemma-insert-same [] () p lemma-insert-same {suc n} (x ∷ xs) zero p = P.cong (flip _∷_ xs) p lemma-insert-same (x ∷ xs) (suc i) p = P.cong (_∷_ x) (lemma-insert-same xs i p) -lemma-lookupM-empty : {A : Set} {n : ℕ} → (i : Fin n) → lookupM {A} i empty ≡ nothing -lemma-lookupM-empty zero = P.refl -lemma-lookupM-empty (suc i) = lemma-lookupM-empty i - lemma-lookupM-restrict : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : Vec (Fin n) m) → {a : A} → lookupM i (restrict f is) ≡ just a → f i ≡ a -lemma-lookupM-restrict i f [] p = contradiction (P.trans (P.sym p) (lemma-lookupM-empty i)) (λ ()) +lemma-lookupM-restrict i f [] p = contradiction (P.trans (P.sym p) (lookup-replicate i nothing)) (λ ()) lemma-lookupM-restrict i f (i' ∷ is) p with i ≟ i' lemma-lookupM-restrict i f (.i ∷ is) {a} p | yes P.refl = just-injective (begin just (f i) @@ -108,7 +104,7 @@ lemma-lookupM-restrict-∈ i f (j ∷ js) (Any.there p) | no i≢j = (lemma-lookupM-restrict-∈ i f js p) lemma-lookupM-restrict-∉ : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (js : Vec (Fin n) m) → i ∉ js → lookupM i (restrict f js) ≡ nothing -lemma-lookupM-restrict-∉ i f [] i∉[] = lemma-lookupM-empty i +lemma-lookupM-restrict-∉ i f [] i∉[] = lookup-replicate i nothing lemma-lookupM-restrict-∉ i f (j ∷ js) i∉jjs = P.trans (lookup∘update′ (All.head i∉jjs) (restrict f js) (just (f j))) (lemma-lookupM-restrict-∉ i f js (All.tail i∉jjs)) |