diff options
Diffstat (limited to 'Structures.agda')
-rw-r--r-- | Structures.agda | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/Structures.agda b/Structures.agda new file mode 100644 index 0000000..f1fd85b --- /dev/null +++ b/Structures.agda @@ -0,0 +1,31 @@ +module Structures where + +open import Category.Functor using (RawFunctor ; module RawFunctor) +open import Function using (_∘_ ; id) +open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_) +open import Relation.Binary using (_Preserves_⟶_) +open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; refl) + +record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where + field + cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_ + identity : {α : Set} → f {α} id ≗ id + composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → + f (g ∘ h) ≗ f g ∘ f h + + isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β) + isCongruence {α} {β} = record + { _⟨$⟩_ = λ g → record + { _⟨$⟩_ = f (_⟨$⟩_ g) + ; cong = P.cong (f (_⟨$⟩_ g)) + } + ; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h refl) x) + } + +record Functor (f : Set → Set) : Set₁ where + field + rawfunctor : RawFunctor f + isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor) + + open RawFunctor rawfunctor public + open IsFunctor isFunctor public |