summaryrefslogtreecommitdiff
path: root/Structures.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Structures.agda')
-rw-r--r--Structures.agda87
1 files changed, 87 insertions, 0 deletions
diff --git a/Structures.agda b/Structures.agda
new file mode 100644
index 0000000..10abd42
--- /dev/null
+++ b/Structures.agda
@@ -0,0 +1,87 @@
+module Structures where
+
+open import Category.Functor using (RawFunctor ; module RawFunctor)
+open import Category.Monad using (module RawMonad)
+open import Data.Maybe using (Maybe) renaming (monad to MaybeMonad)
+open import Data.Nat using (ℕ)
+open import Data.Vec as V using (Vec)
+import Data.Vec.Properties as VP
+open import Function using (_∘_ ; flip ; id)
+open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_)
+open import Relation.Binary using (_Preserves_⟶_)
+open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; refl ; module ≡-Reasoning)
+
+open import Generic using (sequenceV)
+
+record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where
+ field
+ cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_
+ identity : {α : Set} → f {α} id ≗ id
+ composition : {α β γ : Set} → (g : β → γ) → (h : α → β) →
+ f (g ∘ h) ≗ f g ∘ f h
+
+ isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β)
+ isCongruence {α} {β} = record
+ { _⟨$⟩_ = λ g → record
+ { _⟨$⟩_ = f (_⟨$⟩_ g)
+ ; cong = P.cong (f (_⟨$⟩_ g))
+ }
+ ; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h refl) x)
+ }
+
+record Functor (f : Set → Set) : Set₁ where
+ field
+ rawfunctor : RawFunctor f
+ isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor)
+
+ open RawFunctor rawfunctor public
+ open IsFunctor isFunctor public
+
+record IsShaped (S : Set)
+ (C : Set → S → Set)
+ (arity : S → ℕ)
+ (content : {α : Set} {s : S} → C α s → Vec α (arity s))
+ (fill : {α : Set} → (s : S) → Vec α (arity s) → C α s)
+ : Set₁ where
+ field
+ content-fill : {α : Set} {s : S} → (c : C α s) → fill s (content c) ≡ c
+ fill-content : {α : Set} → (s : S) → (v : Vec α (arity s)) → content (fill s v) ≡ v
+
+ fmap : {α β : Set} → (f : α → β) → {s : S} → C α s → C β s
+ fmap f {s} c = fill s (V.map f (content c))
+
+ isFunctor : (s : S) → IsFunctor (flip C s) (λ f → fmap f)
+ isFunctor s = record
+ { cong = λ g≗h c → P.cong (fill s) (VP.map-cong g≗h (content c))
+ ; identity = λ c → begin
+ fill s (V.map id (content c))
+ ≡⟨ P.cong (fill s) (VP.map-id (content c)) ⟩
+ fill s (content c)
+ ≡⟨ content-fill c ⟩
+ c ∎
+ ; composition = λ g h c → P.cong (fill s) (begin
+ V.map (g ∘ h) (content c)
+ ≡⟨ VP.map-∘ g h (content c) ⟩
+ V.map g (V.map h (content c))
+ ≡⟨ P.cong (V.map g) (P.sym (fill-content s (V.map h (content c)))) ⟩
+ V.map g (content (fill s (V.map h (content c)))) ∎)
+ } where open ≡-Reasoning
+
+ fmap-content : {α β : Set} → (f : α → β) → {s : S} → content {β} {s} ∘ fmap f ≗ V.map f ∘ content
+ fmap-content f c = fill-content _ (V.map f (content c))
+ fill-fmap : {α β : Set} → (f : α → β) → (s : S) → fmap f ∘ fill s ≗ fill s ∘ V.map f
+ fill-fmap f s v = P.cong (fill s ∘ V.map f) (fill-content s v)
+
+ sequence : {α : Set} {s : S} → C (Maybe α) s → Maybe (C α s)
+ sequence {s = s} c = fill s <$> sequenceV (content c)
+ where open RawMonad MaybeMonad
+
+record Shaped (S : Set) (C : Set → S → Set) : Set₁ where
+ field
+ arity : S → ℕ
+ content : {α : Set} {s : S} → C α s → Vec α (arity s)
+ fill : {α : Set} → (s : S) → Vec α (arity s) → C α s
+
+ isShaped : IsShaped S C arity content fill
+
+ open IsShaped isShaped public