diff options
author | Helmut Grohne <helmut@subdivi.de> | 2013-01-05 10:41:37 +0100 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2013-01-05 10:41:37 +0100 |
commit | 0a5bb4e9d223f74858d8d9022f1169852899e81a (patch) | |
tree | 3692d003d162100cded0ecd6a613727572954b1e | |
parent | 06e16ec6a913f216ef43a3a32e7094c6e83d40ef (diff) | |
download | bidiragda-0a5bb4e9d223f74858d8d9022f1169852899e81a.tar.gz |
shrink base case of lemma-/notin-lookupM-assoc
-rw-r--r-- | Bidir.agda | 7 |
1 files changed, 1 insertions, 6 deletions
@@ -57,12 +57,7 @@ lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof i x h' r } lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing -lemma-∉-lookupM-assoc i [] [] h ph i∉is = begin - lookupM i h - ≡⟨ cong (lookupM i) (sym (just-injective ph)) ⟩ - lookupM i empty - ≡⟨ lemma-lookupM-empty i ⟩ - nothing ∎ +lemma-∉-lookupM-assoc i [] [] .empty refl i∉is = lemma-lookupM-empty i lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs' lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ] lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record { |