diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2015-06-03 14:12:06 +0200 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2015-06-03 14:12:06 +0200 |
commit | 94f6fbed8b04e95446c38d6ea89dcc9c3a64304b (patch) | |
tree | 6a1054861217dd3b8fde28b153ebf975d0e459e0 | |
parent | 884870669c1271742e6f369cc5f2e9af5811e124 (diff) | |
download | bidiragda-94f6fbed8b04e95446c38d6ea89dcc9c3a64304b.tar.gz |
rewrite lemma-disjoint-union in a more compositional way
-rw-r--r-- | FinMap.agda | 81 |
1 files changed, 55 insertions, 26 deletions
diff --git a/FinMap.agda b/FinMap.agda index b4441f5..cbe24c5 100644 --- a/FinMap.agda +++ b/FinMap.agda @@ -2,24 +2,41 @@ module FinMap where open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ ; zero ; suc) -open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) renaming (setoid to MaybeEq) +open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Properties using (_≟_) -open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip) renaming (lookup to lookupVec ; map to mapV) +open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip ; toList) renaming (lookup to lookupVec ; map to mapV) open import Data.Vec.Equality using () -open Data.Vec.Equality.Equality using (_∷-cong_) -open import Data.Vec.Properties using (lookup∘tabulate) open import Data.Product using (_×_ ; _,_) +open import Data.List.All as All using (All) +import Data.List.All.Properties as AllP +import Data.List.Any as Any open import Function using (id ; _∘_ ; flip ; const) +open import Function.Equality using (module Π) +open import Function.Surjection using (module Surjection) open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary using (Setoid ; module Setoid) -open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) -open import Relation.Binary.PropositionalEquality using (cong ; sym ; _≗_ ; trans ; cong₂) -open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) +open import Relation.Binary.Core using (_≡_ ; refl ; _≢_ ; Decidable) +open import Relation.Binary.PropositionalEquality as P using (cong ; sym ; _≗_ ; trans ; cong₂) +open P.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import Generic using (just-injective) +_∈_ : {A : Set} {n : ℕ} → A → Vec A n → Set +_∈_ {A} x xs = Any.Membership._∈_ (P.setoid A) x (toList xs) + +_∉_ : {A : Set} {n : ℕ} → A → Vec A n → Set +_∉_ {A} x xs = All (_≢_ x) (toList xs) + +data Dec∈ {A : Set} {n : ℕ} (x : A) (xs : Vec A n) : Set where + yes-∈ : x ∈ xs → Dec∈ x xs + no-∉ : x ∉ xs → Dec∈ x xs + +is-∈ : {A : Set} {n : ℕ} → Decidable (_≡_ {A = A}) → (x : A) → (xs : Vec A n) → Dec∈ x xs +is-∈ eq? x xs with Any.any (eq? x) (toList xs) +... | yes x∈xs = yes-∈ x∈xs +... | no x∉xs = no-∉ (Π._⟨$⟩_ (Surjection.to AllP.¬Any↠All¬) x∉xs) + FinMapMaybe : ℕ → Set → Set FinMapMaybe n A = Vec (Maybe A) n @@ -90,6 +107,20 @@ lemma-lookupM-restrict i f (i' ∷ is) {a} p | no i≢i' = lemma-lookupM-restric lookupM i (insert i' (f i') (restrict f is)) ≡⟨ p ⟩ just a ∎) +lemma-lookupM-restrict-∈ : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (js : Vec (Fin n) m) → i ∈ js → lookupM i (restrict f js) ≡ just (f i) +lemma-lookupM-restrict-∈ i f [] () +lemma-lookupM-restrict-∈ i f (j ∷ js) p with i ≟ j +lemma-lookupM-restrict-∈ i f (.i ∷ js) p | yes refl = lemma-lookupM-insert i (f i) (restrict f js) +lemma-lookupM-restrict-∈ i f (j ∷ js) (Any.here i≡j) | no i≢j = contradiction i≡j i≢j +lemma-lookupM-restrict-∈ i f (j ∷ js) (Any.there p) | no i≢j = + trans (lemma-lookupM-insert-other i j (f j) (restrict f js) i≢j) + (lemma-lookupM-restrict-∈ i f js p) + +lemma-lookupM-restrict-∉ : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (js : Vec (Fin n) m) → i ∉ js → lookupM i (restrict f js) ≡ nothing +lemma-lookupM-restrict-∉ i f [] i∉[] = lemma-lookupM-empty i +lemma-lookupM-restrict-∉ i f (j ∷ js) i∉jjs = + trans (lemma-lookupM-insert-other i j (f j) (restrict f js) (All.head i∉jjs)) + (lemma-lookupM-restrict-∉ i f js (All.tail i∉jjs)) lemma-tabulate-∘ : {n : ℕ} {A : Set} → {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g lemma-tabulate-∘ {zero} {_} {f} {g} f≗g = refl @@ -105,26 +136,24 @@ lemma-lookupM-delete {i = zero} {j = suc j} (_ ∷ _) p = refl lemma-lookupM-delete {i = suc i} {j = zero} (x ∷ xs) p = refl lemma-lookupM-delete {i = suc i} {j = suc j} (x ∷ xs) p = lemma-lookupM-delete xs (p ∘ cong suc) +lemma-lookupM-delete-many : {n m : ℕ} {A : Set} (h : FinMapMaybe n A) → (i : Fin n) → (js : Vec (Fin n) m) → i ∉ js → lookupM i (delete-many js h) ≡ lookupM i h +lemma-lookupM-delete-many {n} h i [] i∉[] = refl +lemma-lookupM-delete-many {n} h i (j ∷ js) i∉jjs = + trans (lemma-lookupM-delete (delete-many js h) (All.head i∉jjs)) + (lemma-lookupM-delete-many h i js (All.tail i∉jjs)) + lemma-reshape-id : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → reshape m n ≡ m lemma-reshape-id [] = refl lemma-reshape-id (x ∷ xs) = cong (_∷_ x) (lemma-reshape-id xs) lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f t) (delete-many t (fromFunc f)) ≡ fromFunc f -lemma-disjoint-union {n} {m} f t = lemma-tabulate-∘ (lemma-inner t) - where lemma-inner : {m : ℕ} → (t : Vec (Fin n) m) → (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡ just (f x) - lemma-inner [] x = begin - maybe′ just (lookupM x (fromFunc f)) (lookupM x empty) - ≡⟨ cong (maybe′ just (lookupM x (fromFunc f))) (lemma-lookupM-empty x) ⟩ - lookupM x (fromFunc f) - ≡⟨ lemma-lookupM-fromFunc f x ⟩ - just (f x) ∎ - lemma-inner (t ∷ ts) x with x ≟ t - lemma-inner (.x ∷ ts) x | yes refl = cong (maybe′ just (lookupM x (delete-many (x ∷ ts) (fromFunc f)))) (lemma-lookupM-insert x (f x) (restrict f ts)) - lemma-inner (t ∷ ts) x | no ¬p = begin - maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f (t ∷ ts))) - ≡⟨ cong (maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f)))) (lemma-lookupM-insert-other x t (f t) (restrict f ts) ¬p) ⟩ - maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f ts)) - ≡⟨ cong (flip (maybe′ just) (lookupM x (restrict f ts))) (lemma-lookupM-delete (delete-many ts (fromFunc f)) ¬p) ⟩ - maybe′ just (lookupM x (delete-many ts (fromFunc f))) (lookupM x (restrict f ts)) - ≡⟨ lemma-inner ts x ⟩ - just (f x) ∎ +lemma-disjoint-union {n} f t = lemma-tabulate-∘ inner + where inner : (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡ just (f x) + inner x with is-∈ _≟_ x t + inner x | yes-∈ x∈t = cong (maybe′ just (lookupM x (delete-many t (fromFunc f)))) (lemma-lookupM-restrict-∈ x f t x∈t) + inner x | no-∉ x∉t = begin + maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) + ≡⟨ cong₂ (maybe′ just) (lemma-lookupM-delete-many (fromFunc f) x t x∉t) (lemma-lookupM-restrict-∉ x f t x∉t) ⟩ + maybe′ just (lookupM x (fromFunc f)) nothing + ≡⟨ lemma-lookupM-fromFunc f x ⟩ + just (f x) ∎ |