diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 11:21:10 +0200 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-10-22 11:21:10 +0200 |
commit | 9bc4007c94a94706acbfb02103581b3d94e38001 (patch) | |
tree | 7c343f526502951e32fbf2fd8ac486ea8b42b569 | |
parent | 58038d636d9f1225f8355c22102823e3168ad56c (diff) | |
download | bidiragda-9bc4007c94a94706acbfb02103581b3d94e38001.tar.gz |
finally parameterize CheckInsert
Also adapt depending modules. Long lines generally become shorter. The
misleading name "EqInst" (hiding the decidability) got discarded.
-rw-r--r-- | BFF.agda | 8 | ||||
-rw-r--r-- | Bidir.agda | 47 | ||||
-rw-r--r-- | CheckInsert.agda | 97 | ||||
-rw-r--r-- | Precond.agda | 11 |
4 files changed, 83 insertions, 80 deletions
@@ -9,7 +9,7 @@ open import Function using (id ; _∘_ ; flip) open import Relation.Binary.Core using (Decidable ; _≡_) open import FinMap -open import CheckInsert +import CheckInsert import FreeTheorems _>>=_ : {A B : Set} → Maybe A → (A → Maybe B) → Maybe B @@ -20,10 +20,11 @@ fmap f = maybe′ (λ a → just (f a)) nothing module ListBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open FreeTheorems.ListList public using (get-type) + open CheckInsert Carrier deq assoc : {n : ℕ} → List (Fin n) → List Carrier → Maybe (FinMapMaybe n Carrier) assoc [] [] = just empty - assoc (i ∷ is) (b ∷ bs) = (assoc is bs) >>= (checkInsert deq i b) + assoc (i ∷ is) (b ∷ bs) = (assoc is bs) >>= (checkInsert i b) assoc _ _ = nothing enumerate : (l : List Carrier) → List (Fin (length l)) @@ -41,10 +42,11 @@ module ListBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where module VecBFF (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open FreeTheorems.VecVec public using (get-type) + open CheckInsert Carrier deq assoc : {n m : ℕ} → Vec (Fin n) m → Vec Carrier m → Maybe (FinMapMaybe n Carrier) assoc []V []V = just empty - assoc (i ∷V is) (b ∷V bs) = (assoc is bs) >>= (checkInsert deq i b) + assoc (i ∷V is) (b ∷V bs) = (assoc is bs) >>= (checkInsert i b) enumerate : {n : ℕ} → Vec Carrier n → Vec (Fin n) n enumerate _ = tabulate id @@ -24,7 +24,8 @@ open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨ import FreeTheorems open FreeTheorems.VecVec using (get-type ; free-theorem) open import FinMap -open import CheckInsert +import CheckInsert +open CheckInsert Carrier deq open import BFF using (_>>=_ ; fmap) open BFF.VecBFF Carrier deq using (assoc ; enumerate ; denumerate ; bff) @@ -33,31 +34,31 @@ lemma-1 f [] = refl lemma-1 f (i ∷ is′) = begin assoc (i ∷ is′) (map f (i ∷ is′)) ≡⟨ refl ⟩ - assoc is′ (map f is′) >>= checkInsert deq i (f i) - ≡⟨ cong (λ m → m >>= checkInsert deq i (f i)) (lemma-1 f is′) ⟩ - just (restrict f (toList is′)) >>= (checkInsert deq i (f i)) + assoc is′ (map f is′) >>= checkInsert i (f i) + ≡⟨ cong (λ m → m >>= checkInsert i (f i)) (lemma-1 f is′) ⟩ + just (restrict f (toList is′)) >>= (checkInsert i (f i)) ≡⟨ refl ⟩ - checkInsert deq i (f i) (restrict f (toList is′)) - ≡⟨ lemma-checkInsert-restrict deq f i (toList is′) ⟩ + checkInsert i (f i) (restrict f (toList is′)) + ≡⟨ lemma-checkInsert-restrict f i (toList is′) ⟩ just (restrict f (toList (i ∷ is′))) ∎ lemma-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc (i ∷ is) (x ∷ xs) ≡ just h → lookupM i h ≡ just x lemma-lookupM-assoc i is x xs h p with assoc is xs lemma-lookupM-assoc i is x xs h () | nothing -lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof deq i x h' record +lemma-lookupM-assoc i is x xs h p | just h' = apply-checkInsertProof i x h' record { same = λ lookupM≡justx → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same deq i x h' lookupM≡justx))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-same i x h' lookupM≡justx))) ⟩ lookupM i h' ≡⟨ lookupM≡justx ⟩ just x ∎ ; new = λ lookupM≡nothing → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new deq i x h' lookupM≡nothing))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym p) (lemma-checkInsert-new i x h' lookupM≡nothing))) ⟩ lookupM i (insert i x h') ≡⟨ lemma-lookupM-insert i x h' ⟩ just x ∎ - ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong deq i x h' x' x≢x' lookupM≡justx')) + ; wrong = λ x' x≢x' lookupM≡justx' → lemma-just≢nothing (trans (sym p) (lemma-checkInsert-wrong i x h' x' x≢x' lookupM≡justx')) } lemma-∉-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → assoc is xs ≡ just h → (i ∉ toList is) → lookupM i h ≡ nothing @@ -69,22 +70,22 @@ lemma-∉-lookupM-assoc i [] [] h ph i∉is = begin nothing ∎ lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is with assoc is' xs' | inspect (assoc is') xs' lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h () i∉is | nothing | [ ph' ] -lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record { +lemma-∉-lookupM-assoc i (i' ∷ is') (x' ∷ xs') h ph i∉is | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record { same = λ lookupM-i'-h'≡just-x' → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x'))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x'))) ⟩ lookupM i h' ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩ nothing ∎ ; new = λ lookupM-i'-h'≡nothing → begin lookupM i h - ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing))) ⟩ + ≡⟨ cong (lookupM i) (lemma-from-just (trans (sym ph) (lemma-checkInsert-new i' x' h' lookupM-i'-h'≡nothing))) ⟩ lookupM i (insert i' x' h') ≡⟨ sym (lemma-lookupM-insert-other i i' x' h' (i∉is ∘ here)) ⟩ lookupM i h' ≡⟨ lemma-∉-lookupM-assoc i is' xs' h' ph' (i∉is ∘ there) ⟩ nothing ∎ - ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) + ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) } _in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set @@ -94,16 +95,16 @@ lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin n) m) → (xs : Vec Carrier lemma-assoc-domain [] [] h ph = Data.List.All.[] lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph with assoc is' xs' | inspect (assoc is') xs' lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h () | nothing | [ ph' ] -lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof deq i' x' h' record { +lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply-checkInsertProof i' x' h' record { same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x')) - (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same deq i' x' h' lookupM-i'-h'≡just-x')) ph))) + (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x')) + (lemma-assoc-domain is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same i' x' h' lookupM-i'-h'≡just-x')) ph))) ; new = λ lookupM-i'-h'≡nothing → Data.List.All._∷_ - (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new deq i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h'))) + (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h'))) (Data.List.All.map - (λ {i} p → proj₁ p , lemma-lookupM-checkInsert deq i i' (proj₁ p) x' h' h (proj₂ p) ph) + (λ {i} p → proj₁ p , lemma-lookupM-checkInsert i i' (proj₁ p) x' h' h (proj₂ p) ph) (lemma-assoc-domain is' xs' h' ph')) - ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong deq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) + ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x'')) } lemma-map-lookupM-insert : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (h : FinMapMaybe n Carrier) → i ∉ (toList is) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is @@ -115,7 +116,7 @@ lemma-map-lookupM-insert i (i' ∷ is') x h i∉is ph = begin ≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩ lookupM i' h ∷ map (flip lookupM h) is' ∎ -lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert deq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is +lemma-map-lookupM-assoc : {m n : ℕ} → (i : Fin n) → (is : Vec (Fin n) m) → (x : Carrier) → (xs : Vec Carrier m) → (h : FinMapMaybe n Carrier) → (h' : FinMapMaybe n Carrier) → assoc is xs ≡ just h' → checkInsert i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is lemma-map-lookupM-assoc i [] x [] h h' ph' ph = refl lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph with any (_≟_ i) (toList (i' ∷ is')) lemma-map-lookupM-assoc i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | yes p with Data.List.All.lookup (lemma-assoc-domain (i' ∷ is') (x' ∷ xs') h' ph') p @@ -140,8 +141,8 @@ lemma-2 (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin lookupM i h ∷ map (flip lookupM h) is ≡⟨ cong (flip _∷_ (map (flip lookupM h) is)) (lemma-lookupM-assoc i is x xs h (begin assoc (i ∷ is) (x ∷ xs) - ≡⟨ cong (flip _>>=_ (checkInsert deq i x)) ir ⟩ - checkInsert deq i x h' + ≡⟨ cong (flip _>>=_ (checkInsert i x)) ir ⟩ + checkInsert i x h' ≡⟨ p ⟩ just h ∎) ) ⟩ just x ∷ map (flip lookupM h) is diff --git a/CheckInsert.agda b/CheckInsert.agda index 40a57d6..01f1302 100644 --- a/CheckInsert.agda +++ b/CheckInsert.agda @@ -1,4 +1,6 @@ -module CheckInsert where +open import Relation.Binary.Core using (Decidable ; _≡_) + +module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) @@ -7,86 +9,83 @@ open import Data.Maybe using (Maybe ; nothing ; just) open import Data.List using (List ; [] ; _∷_) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary.Core using (_≡_ ; refl ; _≢_) +open import Relation.Binary.Core using (refl ; _≢_) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap -EqInst : Set → Set -EqInst A = (x y : A) → Dec (x ≡ y) - -checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) -checkInsert eq i b m with lookupM i m -checkInsert eq i b m | just c with eq b c -checkInsert eq i b m | just .b | yes refl = just m -checkInsert eq i b m | just c | no ¬p = nothing -checkInsert eq i b m | nothing = just (insert i b m) +checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier) +checkInsert i b m with lookupM i m +checkInsert i b m | just c with deq b c +checkInsert i b m | just .b | yes refl = just m +checkInsert i b m | just c | no ¬p = nothing +checkInsert i b m | nothing = just (insert i b m) -record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (P : Set) : Set where +record checkInsertProof {n : ℕ} (i : Fin n) (x : Carrier) (m : FinMapMaybe n Carrier) (P : Set) : Set where field same : lookupM i m ≡ just x → P new : lookupM i m ≡ nothing → P - wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → P + wrong : (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → P -apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P -apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m -apply-checkInsertProof eq i x m rp | just x' | il with eq x x' -apply-checkInsertProof eq i x m rp | just .x | [ il ] | yes refl = checkInsertProof.same rp il -apply-checkInsertProof eq i x m rp | just x' | [ il ] | no x≢x' = checkInsertProof.wrong rp x' x≢x' il -apply-checkInsertProof eq i x m rp | nothing | [ il ] = checkInsertProof.new rp il +apply-checkInsertProof : {P : Set} {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → checkInsertProof i x m P → P +apply-checkInsertProof i x m rp with lookupM i m | inspect (lookupM i) m +apply-checkInsertProof i x m rp | just x' | il with deq x x' +apply-checkInsertProof i x m rp | just .x | [ il ] | yes refl = checkInsertProof.same rp il +apply-checkInsertProof i x m rp | just x' | [ il ] | no x≢x' = checkInsertProof.wrong rp x' x≢x' il +apply-checkInsertProof i x m rp | nothing | [ il ] = checkInsertProof.new rp il -lemma-checkInsert-same : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ just x → checkInsert eq i x m ≡ just m -lemma-checkInsert-same eq i x m p with lookupM i m -lemma-checkInsert-same eq i x m refl | .(just x) with eq x x -lemma-checkInsert-same eq i x m refl | .(just x) | yes refl = refl -lemma-checkInsert-same eq i x m refl | .(just x) | no x≢x = contradiction refl x≢x +lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m +lemma-checkInsert-same i x m p with lookupM i m +lemma-checkInsert-same i x m refl | .(just x) with deq x x +lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl +lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x -lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ nothing → checkInsert eq i x m ≡ just (insert i x m) -lemma-checkInsert-new eq i x m p with lookupM i m -lemma-checkInsert-new eq i x m refl | .nothing = refl +lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m) +lemma-checkInsert-new i x m p with lookupM i m +lemma-checkInsert-new i x m refl | .nothing = refl -lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → x ≢ x' → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing -lemma-checkInsert-wrong eq i x m x' d p with lookupM i m -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x' -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d -lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | no ¬q = refl +lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing +lemma-checkInsert-wrong i x m x' d p with lookupM i m +lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x' +lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d +lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl -record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (e : Maybe (FinMapMaybe n A)) : Set where +record checkInsertEqualProof {n : ℕ} (i : Fin n) (x : Carrier) (m : FinMapMaybe n Carrier) (e : Maybe (FinMapMaybe n Carrier)) : Set where field same : lookupM i m ≡ just x → just m ≡ e new : lookupM i m ≡ nothing → just (insert i x m) ≡ e - wrong : (x' : A) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e + wrong : (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → nothing ≡ e -lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e) -lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record - { same = λ p → trans (lemma-checkInsert-same eq i x m p) (checkInsertEqualProof.same o p) - ; new = λ p → trans (lemma-checkInsert-new eq i x m p) (checkInsertEqualProof.new o p) - ; wrong = λ x' q p → trans (lemma-checkInsert-wrong eq i x m x' q p) (checkInsertEqualProof.wrong o x' q p) +lift-checkInsertProof : {n : ℕ} {i : Fin n} {x : Carrier} {m : FinMapMaybe n Carrier} {e : Maybe (FinMapMaybe n Carrier)} → checkInsertEqualProof i x m e → checkInsertProof i x m (checkInsert i x m ≡ e) +lift-checkInsertProof {_} {i} {x} {m} o = record + { same = λ p → trans (lemma-checkInsert-same i x m p) (checkInsertEqualProof.same o p) + ; new = λ p → trans (lemma-checkInsert-new i x m p) (checkInsertEqualProof.new o p) + ; wrong = λ x' q p → trans (lemma-checkInsert-wrong i x m x' q p) (checkInsertEqualProof.wrong o x' q p) } -lemma-checkInsert-restrict : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) -lemma-checkInsert-restrict {τ} eq f i is = apply-checkInsertProof eq i (f i) (restrict f is) (lift-checkInsertProof record +lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) +lemma-checkInsert-restrict f i is = apply-checkInsertProof i (f i) (restrict f is) (lift-checkInsertProof record { same = λ lookupM≡justx → cong just (lemma-insert-same (restrict f is) i (f i) lookupM≡justx) ; new = λ lookupM≡nothing → refl ; wrong = λ x' x≢x' lookupM≡justx' → contradiction (lemma-lookupM-restrict i f is x' lookupM≡justx') x≢x' }) -lemma-lookupM-checkInsert : {A : Set} {n : ℕ} → (eq : EqInst A) → (i j : Fin n) → (x y : A) → (h h' : FinMapMaybe n A) → lookupM i h ≡ just x → checkInsert eq j y h ≡ just h' → lookupM i h' ≡ just x -lemma-lookupM-checkInsert eq i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h -lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j -lemma-lookupM-checkInsert eq i .i x y h .(insert i y h) pl refl | nothing | [ pl' ] | yes refl = lemma-just≢nothing (begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ (nothing ∎)) -lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin +lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x +lemma-lookupM-checkInsert i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h +lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j +lemma-lookupM-checkInsert i .i x y h .(insert i y h) pl refl | nothing | [ pl' ] | yes refl = lemma-just≢nothing (begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ (nothing ∎)) +lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin lookupM i (insert j y h) ≡⟨ sym (lemma-lookupM-insert-other i j y h ¬p) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ -lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just z | pl' with eq y z -lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just .y | pl' | yes refl = begin +lemma-lookupM-checkInsert i j x y h h' pl ph' | just z | pl' with deq y z +lemma-lookupM-checkInsert i j x y h h' pl ph' | just .y | pl' | yes refl = begin lookupM i h' ≡⟨ cong (lookupM i) (lemma-from-just (sym ph')) ⟩ lookupM i h ≡⟨ pl ⟩ just x ∎ -lemma-lookupM-checkInsert eq i j x y h h' pl () | just z | pl' | no ¬p +lemma-lookupM-checkInsert i j x y h h' pl () | just z | pl' | no ¬p diff --git a/Precond.agda b/Precond.agda index 5011e41..a6d2d37 100644 --- a/Precond.agda +++ b/Precond.agda @@ -15,7 +15,8 @@ open import Relation.Binary.PropositionalEquality using (refl ; cong) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import FinMap using (FinMap ; FinMapMaybe ; union ; fromFunc ; empty ; insert) -open import CheckInsert using (EqInst ; checkInsert ; lemma-checkInsert-new) +import CheckInsert +open CheckInsert Carrier deq using (checkInsert ; lemma-checkInsert-new) open import BFF using (fmap ; _>>=_) import Bidir open Bidir Carrier deq using (lemma-∉-lookupM-assoc) @@ -67,8 +68,8 @@ different-assoc (u ∷ us) (v ∷ vs) p with different-assoc us vs (λ i j i≢j different-assoc (u ∷ us) (v ∷ vs) p | h , p' = insert u v h , (begin assoc (u ∷ us) (v ∷ vs) ≡⟨ refl ⟩ - assoc us vs >>= checkInsert deq u v - ≡⟨ cong (flip _>>=_ (checkInsert deq u v)) p' ⟩ - checkInsert deq u v h - ≡⟨ lemma-checkInsert-new deq u v h (lemma-∉-lookupM-assoc u us vs h p' (different-∉ u us p)) ⟩ + assoc us vs >>= checkInsert u v + ≡⟨ cong (flip _>>=_ (checkInsert u v)) p' ⟩ + checkInsert u v h + ≡⟨ lemma-checkInsert-new u v h (lemma-∉-lookupM-assoc u us vs h p' (different-∉ u us p)) ⟩ just (insert u v h) ∎) |