summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-02-17 11:32:35 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-02-17 11:34:40 +0100
commitac482b1a6abeef4cb5e4779b554355b239e3b997 (patch)
tree9e9df38ce4c3122a36bdaf694de5da23d7fc1653
parentf2a68d8eb2d5ea6f3c013ec4caaa938a52c28902 (diff)
downloadbidiragda-ac482b1a6abeef4cb5e4779b554355b239e3b997.tar.gz
use drop, tail and take from Data.Vec in examples
This is possible using the PartialVecVec implementation.
-rw-r--r--BFFPlug.agda15
-rw-r--r--Examples.agda35
2 files changed, 32 insertions, 18 deletions
diff --git a/BFFPlug.agda b/BFFPlug.agda
index f463a09..9f45db1 100644
--- a/BFFPlug.agda
+++ b/BFFPlug.agda
@@ -3,8 +3,7 @@ open import Relation.Binary using (DecSetoid)
module BFFPlug (A : DecSetoid ℓ₀ ℓ₀) where
-open import Data.Nat using (ℕ ; _≟_ ; _+_ ; _∸_ ; zero ; suc ; ⌈_/2⌉)
-open import Data.Nat.Properties using (m+n∸n≡m)
+open import Data.Nat using (ℕ ; _≟_ ; _+_ ; zero ; suc ; ⌈_/2⌉)
open import Data.Maybe using (Maybe ; just ; nothing)
open import Data.Vec using (Vec)
open import Data.Product using (∃ ; _,_)
@@ -43,13 +42,13 @@ bffinv : (G : Get) → (nelteg : PropEq ℕ ⟶ Get.I G) → nelteg RightInverse
bffinv G nelteg inv {m = m} s v = bff G (nelteg ⟨$⟩ m) s (subst (Vec Carrier) (sym (inv m)) v)
module InvExamples where
- open Examples using (reverse' ; drop' ; sieve')
+ open Examples using (reverse' ; drop' ; sieve' ; tail' ; take')
reverse-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier m)
reverse-put = bffinv reverse' (≡-to-Π id) (λ _ → refl)
- drop-put : (k : ℕ) → {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier (m + k))
- drop-put k = bffinv (drop' k) (≡-to-Π (flip _+_ k)) (flip m+n∸n≡m k)
+ drop-put : (k : ℕ) → {n m : ℕ} → Vec Carrier (k + n) → Vec Carrier m → Maybe (Vec Carrier (k + m))
+ drop-put k = bffinv (drop' k) (≡-to-Π id) (λ _ → refl)
double : ℕ → ℕ
double zero = zero
@@ -62,3 +61,9 @@ module InvExamples where
sieve-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier (double m))
sieve-put = bffinv sieve' (≡-to-Π double) sieve-inv-len
+
+ tail-put : {n m : ℕ} → Vec Carrier (suc n) → Vec Carrier m → Maybe (Vec Carrier (suc m))
+ tail-put = bffinv tail' (≡-to-Π id) (λ _ → refl)
+
+ take-put : (k : ℕ) → {n : ℕ} → Vec Carrier (k + n) → Vec Carrier k → Maybe (Vec Carrier (k + n))
+ take-put k = bffsameshape (take' k)
diff --git a/Examples.agda b/Examples.agda
index 25bdbaa..764ac0f 100644
--- a/Examples.agda
+++ b/Examples.agda
@@ -1,9 +1,14 @@
module Examples where
-open import Data.Nat using (ℕ ; zero ; suc ; _⊓_ ; _∸_ ; ⌈_/2⌉)
-open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_)
+open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; ⌈_/2⌉)
+open import Data.Nat.Properties using (cancel-+-left)
+import Algebra.Structures
+open Algebra.Structures.IsCommutativeSemiring Data.Nat.Properties.isCommutativeSemiring using (+-isCommutativeMonoid)
+open Algebra.Structures.IsCommutativeMonoid +-isCommutativeMonoid using () renaming (comm to +-comm)
+open import Data.Vec using (Vec ; [] ; _∷_ ; reverse ; _++_ ; tail ; take ; drop)
open import Function using (id)
-open import Function.Injection using () renaming (id to id↪)
+open import Function.Injection using () renaming (Injection to _↪_ ; id to id↪)
+open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) renaming (setoid to EqSetoid)
open import Generic using (≡-to-Π)
import GetTypes
@@ -27,19 +32,23 @@ double' = assume-get id↪ (≡-to-Π g) f
double'' : Get
double'' = assume-get id↪ (≡-to-Π _) (λ v → v ++ v)
+drop-suc : {n m : ℕ} → suc n ≡ suc m → n ≡ m
+drop-suc refl = refl
+
+suc-injection : EqSetoid ℕ ↪ EqSetoid ℕ
+suc-injection = record { to = ≡-to-Π suc; injective = drop-suc }
+
+tail' : Get
+tail' = assume-get suc-injection (≡-to-Π id) tail
+
+n+-injection : ℕ → EqSetoid ℕ ↪ EqSetoid ℕ
+n+-injection n = record { to = ≡-to-Π (_+_ n); injective = cancel-+-left n }
+
take' : ℕ → Get
-take' n = assume-get id↪ (≡-to-Π _) (f n)
- where f : (n : ℕ) → {A : Set} {m : ℕ} → Vec A m → Vec A (m ⊓ n)
- f n [] = []
- f zero (x ∷ xs) = []
- f (suc n) (x ∷ xs) = x ∷ f n xs
+take' n = assume-get (n+-injection n) (≡-to-Π _) (take n)
drop' : ℕ → Get
-drop' n = assume-get id↪ (≡-to-Π _) (f n)
- where f : (n : ℕ) → {A : Set} {m : ℕ} → Vec A m → Vec A (m ∸ n)
- f zero xs = xs
- f (suc n) [] = []
- f (suc n) (x ∷ xs) = f n xs
+drop' n = assume-get (n+-injection n) (≡-to-Π _) (drop n)
sieve' : Get
sieve' = assume-get id↪ (≡-to-Π _) f