summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-04-20 11:55:52 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-04-20 11:55:52 +0200
commitb2eb5eef26787fcb9ff0778f82473b0fc2dc4caa (patch)
tree23efdc8f8cd6028ec8e30b9b744a90b61a561497
parentbf27d0ee5b48bfc843cdc9bd26b163e25a520df4 (diff)
downloadbidiragda-b2eb5eef26787fcb9ff0778f82473b0fc2dc4caa.tar.gz
complete lemma-2 using new property _in-domain-of_
Reasoning about assoc ... = just ... has turned out to be difficult for inductive arguments. This is why I defined a new property between a List (Fin n) and a FinMapMaybe n A. Thanks to Janis Voigtlaender for suggesting this. lemma-assoc-domain transforms a property about assoc into a domain property which can be used to complete the missing pieces of lemma-2.
-rw-r--r--Bidir.agda37
1 files changed, 35 insertions, 2 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 72d54a4..ebe6f27 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -7,10 +7,11 @@ open import Data.Maybe using (Maybe ; nothing ; just ; maybe′)
open import Data.List using (List ; [] ; _∷_ ; map ; length)
open import Data.List.Properties using (map-cong) renaming (map-compose to map-∘)
open import Data.List.Any using (Any ; any ; here ; there)
+open import Data.List.All using (All)
open Data.List.Any.Membership-≡ using (_∈_ ; _∉_)
open import Data.Vec using (toList ; fromList ; tabulate) renaming (lookup to lookupVec ; _∷_ to _∷V_)
open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate)
-open import Data.Product using (∃ ; _,_)
+open import Data.Product using (∃ ; _,_ ; proj₁ ; proj₂)
open import Data.Empty using (⊥-elim)
open import Function using (id ; _∘_ ; flip)
open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
@@ -187,6 +188,36 @@ lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h ph i∉is | no ¬p | ju
; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong eq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
}
+_in-domain-of_ : {n : ℕ} {A : Set} → (is : List (Fin n)) → (FinMapMaybe n A) → Set
+_in-domain-of_ is h = All (λ i → ∃ λ x → lookupM i h ≡ just x) is
+
+lemma-assoc-domain : {n : ℕ} {A : Set} → (eq : EqInst A) → (is : List (Fin n)) → (xs : List A) → (h : FinMapMaybe n A) → assoc eq is xs ≡ just h → is in-domain-of h
+lemma-assoc-domain eq [] [] h ph = Data.List.All.[]
+lemma-assoc-domain eq [] (x' ∷ xs') h ()
+lemma-assoc-domain eq (i' ∷ is') [] h ()
+lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h ph with assoc eq is' xs' | inspect (assoc eq is') xs'
+lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h () | nothing | ph'
+lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h ph | just h' | Reveal_is_.[_] ph' = apply-checkInsertProof eq i' x' h' record {
+ same = λ lookupM-i'-h'≡just-x' → Data.List.All._∷_
+ (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-same eq i' x' h' lookupM-i'-h'≡just-x')))) lookupM-i'-h'≡just-x'))
+ (lemma-assoc-domain eq is' xs' h (trans ph' (trans (sym (lemma-checkInsert-same eq i' x' h' lookupM-i'-h'≡just-x')) ph)))
+ ; new = λ lookupM-i'-h'≡nothing → Data.List.All._∷_
+ (x' , (trans (cong (lookupM i') (lemma-from-just (trans (sym ph) (lemma-checkInsert-new eq i' x' h' lookupM-i'-h'≡nothing)))) (lemma-lookupM-insert i' x' h')))
+ (Data.List.All.map
+ (λ {i} p → proj₁ p , lemma-lookupM-checkInsert eq i i' (proj₁ p) x' h' h (proj₂ p) ph)
+ (lemma-assoc-domain eq is' xs' h' ph'))
+ ; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong eq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
+ }
+
+lemma-map-lookupM-insert : {n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : List (Fin n)) → (x : A) → (h : FinMapMaybe n A) → ¬(i ∈ is) → is in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
+lemma-map-lookupM-insert eq i [] x h i∉is ph = refl
+lemma-map-lookupM-insert eq i (i' ∷ is') x h i∉is ph = begin
+ lookupM i' (insert i x h) ∷ map (flip lookupM (insert i x h)) is'
+ ≡⟨ cong (flip _∷_ (map (flip lookupM (insert i x h)) is')) (sym (lemma-lookupM-insert-other i' i x h (i∉is ∘ here ∘ sym))) ⟩
+ lookupM i' h ∷ map (flip lookupM (insert i x h)) is'
+ ≡⟨ cong (_∷_ (lookupM i' h)) (lemma-map-lookupM-insert eq i is' x h (i∉is ∘ there) (Data.List.All.tail ph)) ⟩
+ lookupM i' h ∷ map (flip lookupM h) is' ∎
+
lemma-map-lookupM-assoc : {n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : List (Fin n)) → (x : A) → (xs : List A) → (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → assoc eq is xs ≡ just h' → checkInsert eq i x h' ≡ just h → map (flip lookupM h) is ≡ map (flip lookupM h') is
lemma-map-lookupM-assoc eq i [] x [] h h' ph' ph = refl
lemma-map-lookupM-assoc eq i [] x (x' ∷ xs') h h' () ph
@@ -200,7 +231,9 @@ lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' () | yes p | (
lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | no ¬p with lookupM i h' | lemma-∉-lookupM-assoc eq i (i' ∷ is') (x' ∷ xs') h' ph' ¬p
lemma-map-lookupM-assoc eq i (i' ∷ is') x (x' ∷ xs') h h' ph' ph | no ¬p | .nothing | refl = begin
map (flip lookupM h) (i' ∷ is')
- ≡⟨ map-cong {!!} (i' ∷ is') ⟩
+ ≡⟨ map-cong (λ i'' → cong (lookupM i'') (lemma-from-just (sym ph))) (i' ∷ is') ⟩
+ map (flip lookupM (insert i x h')) (i' ∷ is')
+ ≡⟨ lemma-map-lookupM-insert eq i (i' ∷ is') x h' ¬p (lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h' ph') ⟩
map (flip lookupM h') (i' ∷ is') ∎
lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → assoc eq is v ≡ just h → map (flip lookupM h) is ≡ map just v