diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-01-30 14:23:10 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-01-30 14:23:10 +0100 |
commit | e227314c11a17efa2e41ee8756041c4e5b747792 (patch) | |
tree | 1c0c8b7a6643aabb4fe5d9cd46a333b5db7158f1 | |
parent | ffd72d6471ec0166b4dcb4f6b622bcc1c4aafcbf (diff) | |
download | bidiragda-e227314c11a17efa2e41ee8756041c4e5b747792.tar.gz |
fully allow partial get functions
By choosing gl₁ = suc and gl₂ = id, the tail function can now be
bidirectionalized.
-rw-r--r-- | Bidir.agda | 41 | ||||
-rw-r--r-- | Precond.agda | 16 |
2 files changed, 32 insertions, 25 deletions
@@ -18,6 +18,9 @@ open import Data.Vec.Equality using () renaming (module Equality to VecEq) open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-cong ; map-∘) open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) open import Function using (id ; _∘_ ; flip) +open import Function.Equality using (_⟶_ ; _⟨$⟩_) +open import Function.Injection using (module Injection) renaming (Injection to _↪_) +open Injection using (to) open import Relation.Binary.Core using (refl ; _≡_) open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid) open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans ; cong₂ ; decSetoid ; module ≡-Reasoning) renaming (setoid to EqSetoid) @@ -25,13 +28,13 @@ open import Relation.Binary using (Setoid ; module Setoid ; module DecSetoid) import Relation.Binary.EqReasoning as EqR import FreeTheorems -open FreeTheorems.VecVec using (get-type ; free-theorem) +open FreeTheorems.PartialVecVec using (get-type ; free-theorem) open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; sequence-map ; VecISetoid) open import FinMap import CheckInsert open CheckInsert A import BFF -open BFF.VecBFF A using (assoc ; enumerate ; denumerate ; bff) +open BFF.PartialVecBFF A using (assoc ; enumerate ; denumerate ; bff) open Setoid using () renaming (_≈_ to _∋_≈_) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) @@ -125,13 +128,13 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin as ∎) where open ≡-Reasoning -theorem-1 : {getlen : ℕ → ℕ} → (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → bff get s (get s) ≡ just s -theorem-1 get s = begin - bff get s (get s) - ≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ - bff get s (get (map (denumerate s) (enumerate s))) - ≡⟨ cong (bff get s) (free-theorem get (denumerate s) (enumerate s)) ⟩ - bff get s (map (denumerate s) (get (enumerate s))) +theorem-1 : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (s : Vec Carrier (to gl₁ ⟨$⟩ i)) → bff gl₁ gl₂ get s (get s) ≡ just s +theorem-1 gl₁ gl₂ get s = begin + bff gl₁ gl₂ get s (get s) + ≡⟨ cong (bff gl₁ gl₂ get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ + bff gl₁ gl₂ get s (get (map (denumerate s) (enumerate s))) + ≡⟨ cong (bff gl₁ gl₂ get s) (free-theorem gl₁ gl₂ get (denumerate s) (enumerate s)) ⟩ + bff gl₁ gl₂ get s (map (denumerate s) (get (enumerate s))) ≡⟨ refl ⟩ (h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s)))) ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩ @@ -189,8 +192,8 @@ lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] with l lemma-mapM-successful (x ∷ xs) p | just y | just ys | [ p′ ] | w , pw = y ∷ w , cong (_∷_ (just y)) pw -lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {n : ℕ} {v : Vec A n} {r : Vec B n} → mapMV f v ≡ just r → {getlen : ℕ → ℕ} (get : get-type getlen) → get <$> mapMV f v ≡ mapMV f (get v) -lemma-get-mapMV {f = f} {v = v} p get = let w , pw = lemma-mapM-successful v p in begin +lemma-get-mapMV : {A B : Set} {f : A → Maybe B} {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → {i : Setoid.Carrier I} {v : Vec A (to gl₁ ⟨$⟩ i)} {r : Vec B (to gl₁ ⟨$⟩ i)} → mapMV f v ≡ just r → (get : get-type gl₁ gl₂) → get <$> mapMV f v ≡ mapMV f (get v) +lemma-get-mapMV {f = f} gl₁ gl₂ {v = v} p get = let w , pw = lemma-mapM-successful v p in begin get <$> mapMV f v ≡⟨ cong (_<$>_ get) (sym (sequence-map f v)) ⟩ get <$> (sequenceV (map f v)) @@ -200,11 +203,11 @@ lemma-get-mapMV {f = f} {v = v} p get = let w , pw = lemma-mapM-successful v p i get <$> just w ≡⟨ sym (lemma-just-sequence (get w)) ⟩ sequenceV (map just (get w)) - ≡⟨ cong sequenceV (sym (free-theorem get just w)) ⟩ + ≡⟨ cong sequenceV (sym (free-theorem gl₁ gl₂ get just w)) ⟩ sequenceV (get (map just w)) ≡⟨ cong (sequenceV ∘ get) (sym pw) ⟩ sequenceV (get (map f v)) - ≡⟨ cong sequenceV (free-theorem get f v) ⟩ + ≡⟨ cong sequenceV (free-theorem gl₁ gl₂ get f v) ⟩ sequenceV (map f (get v)) ≡⟨ sequence-map f (get v) ⟩ mapMV f (get v) ∎ @@ -217,16 +220,16 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecE sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (just x≈y VecEq.∷-cong xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) sequence-cong {S} (nothing VecEq.∷-cong xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -theorem-2 : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (v : Vec Carrier (getlen m)) → (s u : Vec Carrier m) → bff get s v ≡ just u → VecISetoid A.setoid at _ ∋ get u ≈ v -theorem-2 get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p) -theorem-2 get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′) -theorem-2 get v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ +theorem-2 : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (v : Vec Carrier (gl₂ ⟨$⟩ i)) → (s u : Vec Carrier (to gl₁ ⟨$⟩ i)) → bff gl₁ gl₂ get s v ≡ just u → VecISetoid A.setoid at _ ∋ get u ≈ v +theorem-2 gl₁ gl₂ get v s u p with (lemma->>=-just ((flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (get (enumerate s)) v)) p) +theorem-2 gl₁ gl₂ get v s u p | h′ , ph′ with (lemma-<$>-just (assoc (get (enumerate s)) v) ph′) +theorem-2 gl₁ gl₂ get v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ get <$> (just u) ≡⟨ cong (_<$>_ get) (sym p) ⟩ - get <$> (bff get s v) + get <$> (bff gl₁ gl₂ get s v) ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ get <$> mapMV (flip lookupM (h↦h′ h)) s′ - ≡⟨ lemma-get-mapMV (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) get ⟩ + ≡⟨ lemma-get-mapMV gl₁ gl₂ (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) get ⟩ mapMV (flip lookupM (h↦h′ h)) (get s′) ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩ sequenceV (map (flip lookupM (h↦h′ h)) (get s′)) diff --git a/Precond.agda b/Precond.agda index 19329b5..a6f2871 100644 --- a/Precond.agda +++ b/Precond.agda @@ -6,7 +6,7 @@ open import Data.Nat using (ℕ) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Props using (_≟_) open import Data.List using (List ; [] ; _∷_) -import Level +open import Level using () renaming (zero to ℓ₀) import Category.Monad import Category.Functor open import Data.Maybe using (Maybe ; nothing ; just ; maybe′) @@ -20,7 +20,11 @@ open Data.List.Any.Membership-≡ using (_∉_) open import Data.Maybe using (just) open import Data.Product using (∃ ; _,_ ; proj₂) open import Function using (flip ; _∘_ ; id) -open import Relation.Binary.PropositionalEquality using (refl ; cong ; inspect ; [_] ; sym ; decSetoid) +open import Function.Equality using (_⟶_ ; _⟨$⟩_) +open import Function.Injection using (module Injection) renaming (Injection to _↪_) +open Injection using (to) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality using (refl ; cong ; inspect ; [_] ; sym ; decSetoid) renaming (setoid to EqSetoid) open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import Relation.Nullary using (yes ; no) @@ -31,7 +35,7 @@ open CheckInsert (decSetoid deq) using (checkInsert ; lemma-checkInsert-new ; le import BFF open import Bidir (decSetoid deq) using (_in-domain-of_ ; lemma-assoc-domain ; lemma-just-sequence) -open BFF.VecBFF (decSetoid deq) using (get-type ; assoc ; enumerate ; denumerate ; bff) +open BFF.PartialVecBFF (decSetoid deq) using (get-type ; assoc ; enumerate ; denumerate ; bff) lemma-lookup-map-just : {n : ℕ} (f : Fin n) {A : Set} (v : Vec A n) → lookup f (map Maybe.just v) ≡ Maybe.just (lookup f v) lemma-lookup-map-just zero (x ∷ xs) = refl @@ -69,9 +73,9 @@ lemma-union-delete-fromFunc {n = n} {is = i ∷ is} {h = h} {g = g} ((x , px) Da maybe′ just (lookupM i (delete-many is (map just g))) (lookup i h) ∎ inner f | no f≢i = cong (flip (maybe′ just) (lookup f h)) (lemma-lookupM-delete (delete-many is (map just g)) f≢i) -assoc-enough : {getlen : ℕ → ℕ} (get : get-type getlen) → {m : ℕ} → (s : Vec Carrier m) → (v : Vec Carrier (getlen m)) → ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff get s v ≡ just u -assoc-enough get s v (h , p) = let w , pw = lemma-union-delete-fromFunc (lemma-assoc-domain (get s′) v h p) in _ , (begin - bff get s v +assoc-enough : {I : Setoid ℓ₀ ℓ₀} → (gl₁ : I ↪ EqSetoid ℕ) → (gl₂ : I ⟶ EqSetoid ℕ) → (get : get-type gl₁ gl₂) → {i : Setoid.Carrier I} → (s : Vec Carrier (to gl₁ ⟨$⟩ i)) → (v : Vec Carrier (gl₂ ⟨$⟩ i)) → ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff gl₁ gl₂ get s v ≡ just u +assoc-enough gl₁ gl₂ get s v (h , p) = let w , pw = lemma-union-delete-fromFunc (lemma-assoc-domain (get s′) v h p) in _ , (begin + bff gl₁ gl₂ get s v ≡⟨ cong (flip _>>=_ (flip mapMV s′ ∘ flip lookupM) ∘ _<$>_ (flip union g′)) p ⟩ mapMV (flip lookupM (union h g′)) s′ ≡⟨ sym (sequence-map (flip lookupM (union h g′)) s′) ⟩ |