summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-22 22:36:16 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-22 22:36:16 +0100
commit0a34343e2cd20be26411af267a57b54fd300cf38 (patch)
tree5bc0a14abf3209642614e6fbd2682ca2359c8df4 /Bidir.agda
parent2f01bfa8f4580eb0777a66946c62dd5af6f2867c (diff)
downloadbidiragda-0a34343e2cd20be26411af267a57b54fd300cf38.tar.gz
formulate lemma-2
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda3
1 files changed, 3 insertions, 0 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 736b910..e77de94 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -80,6 +80,9 @@ lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x with eq (f i) x
lemma-1 eq f (i ∷ is′) | just m | .m | refl | just .(f i) | yes refl = cong just (lemma-insert-same m i {!!})
lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x | no ¬p = {!!}
+lemma-2 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
+lemma-2 eq is v h p = {!!}
+
idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)