diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-01-19 11:33:17 +0100 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-01-19 11:33:17 +0100 |
commit | 537a03c250380225285be4cba1d05cacfd71ab44 (patch) | |
tree | 627c769009188a069e21ee7488309bb1ae47b87e /Bidir.agda | |
parent | 627abd640e94159ccdc5c6615fbbca347ade3b63 (diff) | |
download | bidiragda-537a03c250380225285be4cba1d05cacfd71ab44.tar.gz |
first attempt to model lemma-1
Without using the stdlib basic data structures are defined (with the
stdlib names in mind). The IntMap given in the paper is translated to a
NatMap. There are definitions for checkInsert and assoc resulting in a
formalization of lemma-1.
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/Bidir.agda b/Bidir.agda new file mode 100644 index 0000000..e2706a0 --- /dev/null +++ b/Bidir.agda @@ -0,0 +1,108 @@ +module Bidir where + +data Bool : Set where + true : Bool + false : Bool + +not : Bool → Bool +not true = false +not false = true + +data ℕ : Set where + zero : ℕ + suc : ℕ → ℕ + +equal? : ℕ -> ℕ -> Bool +equal? zero zero = true +equal? (suc n) (suc m) = equal? n m +equal? _ _ = false + +data Maybe (A : Set) : Set where + nothing : Maybe A + just : A → Maybe A + +maybeToBool : {A : Set} → Maybe A → Bool +maybeToBool nothing = false +maybeToBool (just _) = true + +maybe′ : {A B : Set} → (A → Maybe B) → Maybe B → Maybe A → Maybe B +maybe′ y _ (just a) = y a +maybe′ _ n nothing = n + +data _×_ (A B : Set) : Set where + _,_ : A → B → A × B + +data List (A : Set) : Set where + [] : List A + _∷_ : A → List A → List A + +_++_ : {A : Set} → List A → List A → List A +_++_ [] ys = ys +_++_ (x ∷ xs) ys = x ∷ (xs ++ ys) + +map : {A B : Set} → (A → B) → List A → List B +map f [] = [] +map f (x ∷ xs) = f x ∷ map f xs + +zip : {A B : Set} → List A → List B → List (A × B) +zip (a ∷ as) (b ∷ bs) = (a , b) ∷ zip as bs +zip _ _ = [] + +data _==_ {A : Set}(x : A) : A → Set where + refl : x == x + +module NatMap where + + NatMap : Set → Set + NatMap A = List (ℕ × A) + + lookup : {A : Set} → ℕ → NatMap A → Maybe A + lookup n [] = nothing + lookup n ((m , a) ∷ xs) with equal? n m + lookup n ((m , a) ∷ xs) | true = just a + lookup n ((m , a) ∷ xs) | false = lookup n xs + + notMember : {A : Set} → ℕ → NatMap A → Bool + notMember n m = not (maybeToBool (lookup n m)) + + -- For now we simply prepend the element. This may lead to duplicates. + insert : {A : Set} → ℕ → A → NatMap A → NatMap A + insert n a m = (n , a) ∷ m + + fromAscList : {A : Set} → List (ℕ × A) → NatMap A + fromAscList [] = [] + fromAscList ((n , a) ∷ xs) = insert n a (fromAscList xs) + + empty : {A : Set} → NatMap A + empty = [] + + union : {A : Set} → NatMap A → NatMap A → NatMap A + union [] m = m + union ((n , a) ∷ xs) m = insert n a (union xs m) + +open NatMap + +checkInsert : {A : Set} → (A → A → Bool) → ℕ → A → NatMap A → Maybe (NatMap A) +checkInsert eq i b m with lookup i m +checkInsert eq i b m | just c with eq b c +checkInsert eq i b m | just c | true = just m +checkInsert eq i b m | just c | false = nothing +checkInsert eq i b m | nothing = just (insert i b m) + +assoc : {A : Set} → (A → A → Bool) → List ℕ → List A → Maybe (NatMap A) +assoc _ [] [] = just empty +assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) +assoc _ _ _ = nothing + +--data Equal? where +-- same ... +-- different ... + +generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A +generate f [] = empty +generate f (n ∷ ns) = insert n (f n) (generate f ns) + +-- this lemma is probably wrong, because two different NatMaps may represent the same semantic value. +lemma-1 : {τ : Set} → (eq : τ → τ → Bool) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) == just (generate f is) +lemma-1 eq f [] = refl +lemma-1 eq f (i ∷ is′) = {!!} |