summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-19 11:33:17 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-19 11:33:17 +0100
commit537a03c250380225285be4cba1d05cacfd71ab44 (patch)
tree627c769009188a069e21ee7488309bb1ae47b87e /Bidir.agda
parent627abd640e94159ccdc5c6615fbbca347ade3b63 (diff)
downloadbidiragda-537a03c250380225285be4cba1d05cacfd71ab44.tar.gz
first attempt to model lemma-1
Without using the stdlib basic data structures are defined (with the stdlib names in mind). The IntMap given in the paper is translated to a NatMap. There are definitions for checkInsert and assoc resulting in a formalization of lemma-1.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda108
1 files changed, 108 insertions, 0 deletions
diff --git a/Bidir.agda b/Bidir.agda
new file mode 100644
index 0000000..e2706a0
--- /dev/null
+++ b/Bidir.agda
@@ -0,0 +1,108 @@
+module Bidir where
+
+data Bool : Set where
+ true : Bool
+ false : Bool
+
+not : Bool → Bool
+not true = false
+not false = true
+
+data ℕ : Set where
+ zero : ℕ
+ suc : ℕ → ℕ
+
+equal? : ℕ -> ℕ -> Bool
+equal? zero zero = true
+equal? (suc n) (suc m) = equal? n m
+equal? _ _ = false
+
+data Maybe (A : Set) : Set where
+ nothing : Maybe A
+ just : A → Maybe A
+
+maybeToBool : {A : Set} → Maybe A → Bool
+maybeToBool nothing = false
+maybeToBool (just _) = true
+
+maybe′ : {A B : Set} → (A → Maybe B) → Maybe B → Maybe A → Maybe B
+maybe′ y _ (just a) = y a
+maybe′ _ n nothing = n
+
+data _×_ (A B : Set) : Set where
+ _,_ : A → B → A × B
+
+data List (A : Set) : Set where
+ [] : List A
+ _∷_ : A → List A → List A
+
+_++_ : {A : Set} → List A → List A → List A
+_++_ [] ys = ys
+_++_ (x ∷ xs) ys = x ∷ (xs ++ ys)
+
+map : {A B : Set} → (A → B) → List A → List B
+map f [] = []
+map f (x ∷ xs) = f x ∷ map f xs
+
+zip : {A B : Set} → List A → List B → List (A × B)
+zip (a ∷ as) (b ∷ bs) = (a , b) ∷ zip as bs
+zip _ _ = []
+
+data _==_ {A : Set}(x : A) : A → Set where
+ refl : x == x
+
+module NatMap where
+
+ NatMap : Set → Set
+ NatMap A = List (ℕ × A)
+
+ lookup : {A : Set} → ℕ → NatMap A → Maybe A
+ lookup n [] = nothing
+ lookup n ((m , a) ∷ xs) with equal? n m
+ lookup n ((m , a) ∷ xs) | true = just a
+ lookup n ((m , a) ∷ xs) | false = lookup n xs
+
+ notMember : {A : Set} → ℕ → NatMap A → Bool
+ notMember n m = not (maybeToBool (lookup n m))
+
+ -- For now we simply prepend the element. This may lead to duplicates.
+ insert : {A : Set} → ℕ → A → NatMap A → NatMap A
+ insert n a m = (n , a) ∷ m
+
+ fromAscList : {A : Set} → List (ℕ × A) → NatMap A
+ fromAscList [] = []
+ fromAscList ((n , a) ∷ xs) = insert n a (fromAscList xs)
+
+ empty : {A : Set} → NatMap A
+ empty = []
+
+ union : {A : Set} → NatMap A → NatMap A → NatMap A
+ union [] m = m
+ union ((n , a) ∷ xs) m = insert n a (union xs m)
+
+open NatMap
+
+checkInsert : {A : Set} → (A → A → Bool) → ℕ → A → NatMap A → Maybe (NatMap A)
+checkInsert eq i b m with lookup i m
+checkInsert eq i b m | just c with eq b c
+checkInsert eq i b m | just c | true = just m
+checkInsert eq i b m | just c | false = nothing
+checkInsert eq i b m | nothing = just (insert i b m)
+
+assoc : {A : Set} → (A → A → Bool) → List ℕ → List A → Maybe (NatMap A)
+assoc _ [] [] = just empty
+assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs)
+assoc _ _ _ = nothing
+
+--data Equal? where
+-- same ...
+-- different ...
+
+generate : {A : Set} → (ℕ → A) → List ℕ → NatMap A
+generate f [] = empty
+generate f (n ∷ ns) = insert n (f n) (generate f ns)
+
+-- this lemma is probably wrong, because two different NatMaps may represent the same semantic value.
+lemma-1 : {τ : Set} → (eq : τ → τ → Bool) → (f : ℕ → τ) → (is : List ℕ) → assoc eq is (map f is) == just (generate f is)
+lemma-1 eq f [] = refl
+lemma-1 eq f (i ∷ is′) = {!!}