diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-02-07 16:15:03 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-02-07 16:15:03 +0100 |
commit | 586d72e18898311d975f5748bca397c403b6a83b (patch) | |
tree | 2733f576b6e3ff0965ca8eb213fe0635be3631df /Bidir.agda | |
parent | 95609983219f14e8f4c0758cd0688b984d8b1455 (diff) | |
download | bidiragda-586d72e18898311d975f5748bca397c403b6a83b.tar.gz |
allow shape shape updates in bff
Unlike the original version in VoigtlaenderHMW13, we do not request an
sput : ℕ → ℕ → Maybe ℕ
function for determining the updated source shape from the original
source and updated view shape. Instead we ask the caller directly to
provide the result of sput together with a proof that its getlen matches
with the provided, updated view.
The precondition assoc-enough is not enriched in this way and still
requires a non-changing shape. I.e. it says what it said before.
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 65 |
1 files changed, 34 insertions, 31 deletions
@@ -31,7 +31,7 @@ open import FinMap import CheckInsert open CheckInsert A import BFF -open BFF.VecBFF A using (assoc ; enumerate ; denumerate ; bff) +open BFF.VecBFF A using (assoc ; enumerate ; enumeratel ; denumerate ; bff) open Setoid using () renaming (_≈_ to _∋_≈_) open module A = DecSetoid A using (Carrier) renaming (_≟_ to deq) @@ -125,18 +125,20 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin as ∎) where open ≡-Reasoning -theorem-1 : (G : Get) → {m : ℕ} → (s : Vec Carrier m) → bff G s (Get.get G s) ≡ just s -theorem-1 G s = begin - bff G s (get s) - ≡⟨ cong (bff G s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ - bff G s (get (map (denumerate s) (enumerate s))) - ≡⟨ cong (bff G s) (free-theorem (denumerate s) (enumerate s)) ⟩ - bff G s (map (denumerate s) (get (enumerate s))) +theorem-1 : (G : Get) → {m : ℕ} → (s : Vec Carrier m) → bff G m s (Get.get G s) ≡ just s +theorem-1 G {m} s = begin + bff G m s (get s) + ≡⟨ cong (bff G m s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ + bff G m s (get (map (denumerate s) (enumerate s))) + ≡⟨ cong (bff G m s) (free-theorem (denumerate s) (enumerate s)) ⟩ + bff G m s (map (denumerate s) (get (enumerate s))) ≡⟨ refl ⟩ (h′↦r ∘ h↦h′) (assoc (get (enumerate s)) (map (denumerate s) (get (enumerate s)))) ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (denumerate s) (get (enumerate s))) ⟩ (h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s)))) ≡⟨ refl ⟩ + (h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (reshape (delete-many (get (enumerate s)) (fromFunc (denumerate s))) m)) + ≡⟨ cong (h′↦r ∘ Maybe.just ∘ union (restrict (denumerate s) (toList (get (enumerate s))))) (lemma-reshape-id (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) ⟩ (h′↦r ∘ just) (union (restrict (denumerate s) (toList (get (enumerate s)))) (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) ≡⟨ cong (h′↦r ∘ just) (lemma-disjoint-union (denumerate s) (get (enumerate s))) ⟩ (h′↦r ∘ just) (fromFunc (denumerate s)) @@ -150,7 +152,7 @@ theorem-1 G s = begin just s ∎ where open ≡-Reasoning open Get G - h↦h′ = _<$>_ (flip union (delete-many (get (enumerate s)) (fromFunc (denumerate s)))) + h↦h′ = _<$>_ (flip union (reshape (delete-many (get (enumerate s)) (fromFunc (denumerate s))) m)) h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupM) @@ -158,14 +160,14 @@ lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma lemma-<$>-just (just x) f<$>ma≡just-b = x , refl lemma-<$>-just nothing () -lemma-union-not-used : {m n : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMapMaybe n A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map (flip lookupM (union h h')) is ≡ map (flip lookupM h) is -lemma-union-not-used h h' [] p = refl -lemma-union-not-used h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin - lookupM i (union h h') - ≡⟨ lookup∘tabulate (λ j → maybe′ just (lookupM j h') (lookupM j h)) i ⟩ - maybe′ just (lookupM i h') (lookupM i h) - ≡⟨ cong (maybe′ just (lookupM i h')) px ⟩ - maybe′ just (lookupM i h') (just x) +lemma-union-not-used : {m n n' : ℕ} {A : Set} (h : FinMapMaybe n A) → (h' : FinMapMaybe n' A) → (is : Vec (Fin n) m) → (toList is) in-domain-of h → map (flip lookupM (union h (reshape h' n))) is ≡ map (flip lookupM h) is +lemma-union-not-used h h' [] p = refl +lemma-union-not-used {n = n} h h' (i ∷ is') (Data.List.All._∷_ (x , px) p') = cong₂ _∷_ (begin + lookupM i (union h (reshape h' n)) + ≡⟨ lookup∘tabulate (λ j → maybe′ just (lookupM j (reshape h' n)) (lookupM j h)) i ⟩ + maybe′ just (lookupM i (reshape h' n)) (lookupM i h) + ≡⟨ cong (maybe′ just (lookupM i (reshape h' n))) px ⟩ + maybe′ just (lookupM i (reshape h' n)) (just x) ≡⟨ sym px ⟩ lookupM i h ∎) (lemma-union-not-used h h' is' p') @@ -220,22 +222,22 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -theorem-2 : (G : Get) → {m : ℕ} → (v : Vec Carrier (Get.getlen G m)) → (s u : Vec Carrier m) → bff G s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v -theorem-2 G v s u p with (lemma->>=-just ((flip union (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s)))) <$> (assoc (Get.get G (enumerate s)) v)) p) -theorem-2 G v s u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumerate s)) v) ph′) -theorem-2 G v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ +theorem-2 : (G : Get) → {m : ℕ} → (n : ℕ) → (s : Vec Carrier m) → (v : Vec Carrier (Get.getlen G n)) → (u : Vec Carrier n) → bff G n s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v +theorem-2 G n s v u p with (lemma->>=-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) n)) <$> (assoc (Get.get G (enumeratel n)) v)) p) +theorem-2 G n s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel n)) v) ph′) +theorem-2 G n s v u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (VecISetoid A.setoid at _) ⟩ get <$> (just u) ≡⟨ cong (_<$>_ get) (sym p) ⟩ - get <$> (bff G s v) + get <$> (bff G n s v) ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ - get <$> mapMV (flip lookupM (h↦h′ h)) s′ + get <$> mapMV (flip lookupM (h↦h′ h)) t ≡⟨ lemma-get-mapMV (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) G ⟩ - mapMV (flip lookupM (h↦h′ h)) (get s′) - ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get s′)) ⟩ - sequenceV (map (flip lookupM (h↦h′ h)) (get s′)) - ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get s′) (lemma-assoc-domain (get s′) v h ph)) ⟩ - sequenceV (map (flip lookupM h) (get s′)) - ≈⟨ sequence-cong (lemma-2 (get s′) v h ph) ⟩ + mapMV (flip lookupM (h↦h′ h)) (get t) + ≡⟨ sym (sequence-map (flip lookupM (h↦h′ h)) (get t)) ⟩ + sequenceV (map (flip lookupM (h↦h′ h)) (get t)) + ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph)) ⟩ + sequenceV (map (flip lookupM h) (get t)) + ≈⟨ sequence-cong (lemma-2 (get t) v h ph) ⟩ sequenceV (map just v) ≡⟨ lemma-just-sequence v ⟩ just v ∎) @@ -244,5 +246,6 @@ theorem-2 G v s u p | h′ , ph′ | h , ph = drop-just (begin⟨ MaybeSetoid (V s′ = enumerate s g = fromFunc (denumerate s) g′ = delete-many (get s′) g - h↦h′ = flip union g′ - h′↦r = flip mapMV s′ ∘ flip lookupM + t = enumeratel n + h↦h′ = flip union (reshape g′ n) + h′↦r = flip mapMV (enumeratel n) ∘ flip lookupM |