summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-01-22 22:47:39 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-01-22 22:47:39 +0100
commit7b1b49cf6085172526b93e3b652c74ba091d7070 (patch)
tree6581034881a98431aff680581b96038e752d841e /Bidir.agda
parent347f4ff2ed76a0fc5648faf698b054efba51e0ff (diff)
downloadbidiragda-7b1b49cf6085172526b93e3b652c74ba091d7070.tar.gz
improve readability by introducing EqInst
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda15
1 files changed, 9 insertions, 6 deletions
diff --git a/Bidir.agda b/Bidir.agda
index ff20caf..25caa3e 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -44,14 +44,17 @@ module FinMap where
open FinMap
-checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
+EqInst : Set → Set
+EqInst A = (x y : A) → Dec (x ≡ y)
+
+checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
checkInsert eq i b m with lookupM i m
checkInsert eq i b m | just c with eq b c
checkInsert eq i b m | just .b | yes refl = just m
checkInsert eq i b m | just c | no ¬p = nothing
checkInsert eq i b m | nothing = just (insert i b m)
-assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMapMaybe n A)
+assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A)
assoc _ [] [] = just empty
assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs)
assoc _ _ _ = nothing
@@ -70,7 +73,7 @@ lemma-insert-same [] () a?
lemma-insert-same (.(just x) ∷ xs) zero (is-just x) = refl
lemma-insert-same (x ∷ xs) (suc f′) a? = cong (_∷_ x) (lemma-insert-same xs f′ a?)
-lemma-1 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
+lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is)
lemma-1 eq f [] = refl
lemma-1 eq f (i ∷ is′) with assoc eq is′ (map f is′) | generate f is′ | lemma-1 eq f is′
lemma-1 eq f (i ∷ is′) | nothing | _ | ()
@@ -80,18 +83,18 @@ lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x with eq (f i) x
lemma-1 eq f (i ∷ is′) | just m | .m | refl | just .(f i) | yes refl = cong just (lemma-insert-same m i {!!})
lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x | no ¬p = {!!}
-lemma-2 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
+lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v
lemma-2 eq is v h p = {!!}
idrange : (n : ℕ) → List (Fin n)
idrange n = toList (tabulate id)
-bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B))
+bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B))
bff get eq s v = let s′ = idrange (length s)
g = fromFunc (λ f → lookupVec f (fromList s))
h = assoc eq (get s′) v
h′ = maybe′ (λ jh → just (union jh g)) nothing h
in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′
-theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : (x y : τ) → Dec (x ≡ y)) → (s : List τ) → bff get eq s (get s) ≡ just s
+theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s
theorem-1 get eq s = {!!}