diff options
author | Helmut Grohne <helmut@subdivi.de> | 2012-01-22 22:47:39 +0100 |
---|---|---|
committer | Helmut Grohne <helmut@subdivi.de> | 2012-01-22 22:47:39 +0100 |
commit | 7b1b49cf6085172526b93e3b652c74ba091d7070 (patch) | |
tree | 6581034881a98431aff680581b96038e752d841e /Bidir.agda | |
parent | 347f4ff2ed76a0fc5648faf698b054efba51e0ff (diff) | |
download | bidiragda-7b1b49cf6085172526b93e3b652c74ba091d7070.tar.gz |
improve readability by introducing EqInst
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 15 |
1 files changed, 9 insertions, 6 deletions
@@ -44,14 +44,17 @@ module FinMap where open FinMap -checkInsert : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) +EqInst : Set → Set +EqInst A = (x y : A) → Dec (x ≡ y) + +checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A) checkInsert eq i b m with lookupM i m checkInsert eq i b m | just c with eq b c checkInsert eq i b m | just .b | yes refl = just m checkInsert eq i b m | just c | no ¬p = nothing checkInsert eq i b m | nothing = just (insert i b m) -assoc : {A : Set} {n : ℕ} → ((x y : A) → Dec (x ≡ y)) → List (Fin n) → List A → Maybe (FinMapMaybe n A) +assoc : {A : Set} {n : ℕ} → EqInst A → List (Fin n) → List A → Maybe (FinMapMaybe n A) assoc _ [] [] = just empty assoc eq (i ∷ is) (b ∷ bs) = maybe′ (checkInsert eq i b) nothing (assoc eq is bs) assoc _ _ _ = nothing @@ -70,7 +73,7 @@ lemma-insert-same [] () a? lemma-insert-same (.(just x) ∷ xs) zero (is-just x) = refl lemma-insert-same (x ∷ xs) (suc f′) a? = cong (_∷_ x) (lemma-insert-same xs f′ a?) -lemma-1 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is) +lemma-1 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : List (Fin n)) → assoc eq is (map f is) ≡ just (generate f is) lemma-1 eq f [] = refl lemma-1 eq f (i ∷ is′) with assoc eq is′ (map f is′) | generate f is′ | lemma-1 eq f is′ lemma-1 eq f (i ∷ is′) | nothing | _ | () @@ -80,18 +83,18 @@ lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x with eq (f i) x lemma-1 eq f (i ∷ is′) | just m | .m | refl | just .(f i) | yes refl = cong just (lemma-insert-same m i {!!}) lemma-1 eq f (i ∷ is′) | just m | .m | refl | just x | no ¬p = {!!} -lemma-2 : {τ : Set} {n : ℕ} → (eq : (x y : τ) → Dec (x ≡ y)) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v +lemma-2 : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (is : List (Fin n)) → (v : List τ) → (h : FinMapMaybe n τ) → just h ≡ assoc eq is v → map (flip lookup h) is ≡ map just v lemma-2 eq is v h p = {!!} idrange : (n : ℕ) → List (Fin n) idrange n = toList (tabulate id) -bff : ({A : Set} → List A → List A) → ({B : Set} → ((x y : B) → Dec (x ≡ y)) → List B → List B → Maybe (List B)) +bff : ({A : Set} → List A → List A) → ({B : Set} → EqInst B → List B → List B → Maybe (List B)) bff get eq s v = let s′ = idrange (length s) g = fromFunc (λ f → lookupVec f (fromList s)) h = assoc eq (get s′) v h′ = maybe′ (λ jh → just (union jh g)) nothing h in maybe′ (λ jh′ → just (map (flip lookup jh′) s′)) nothing h′ -theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : (x y : τ) → Dec (x ≡ y)) → (s : List τ) → bff get eq s (get s) ≡ just s +theorem-1 : (get : {α : Set} → List α → List α) → {τ : Set} → (eq : EqInst τ) → (s : List τ) → bff get eq s (get s) ≡ just s theorem-1 get eq s = {!!} |