summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-10-05 12:47:09 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-10-05 12:47:09 +0200
commit7ba21759412a8b356f7790ac5f5e413302331183 (patch)
tree58b2f83f1abe029596071e0b151470b122e72102 /Bidir.agda
parent96e45ecbf31c5685fa914882ec4b21b1392c49fc (diff)
downloadbidiragda-7ba21759412a8b356f7790ac5f5e413302331183.tar.gz
move all postulates to one module
This should make it easier to see what is assumed.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda13
1 files changed, 5 insertions, 8 deletions
diff --git a/Bidir.agda b/Bidir.agda
index a1f958c..2567d8f 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -19,12 +19,12 @@ open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; _≗_ ; trans)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
+import FreeTheorems
+open FreeTheorems.VecVec using (get-type ; free-theorem)
open import FinMap
open import CheckInsert
-
open import BFF using (_>>=_ ; fmap)
-
-open BFF.VecBFF using (get-type ; assoc ; enumerate ; denumerate ; bff)
+open BFF.VecBFF using (assoc ; enumerate ; denumerate ; bff)
lemma-1 : {τ : Set} {m n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (is : Vec (Fin n) m) → assoc eq is (map f is) ≡ just (restrict f (toList is))
lemma-1 eq f [] = refl
@@ -150,9 +150,6 @@ lemma-2 eq (i ∷ is) (x ∷ xs) h p | just h' | [ ir ] = begin
≡⟨ refl ⟩
map just (x ∷ xs) ∎
-postulate
- free-theorem-list-list : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {m : ℕ} → (v : Vec α m) → get (map f v) ≡ map f (get v)
-
lemma-map-denumerate-enumerate : {m : ℕ} {A : Set} → (as : Vec A m) → map (denumerate as) (enumerate as) ≡ as
lemma-map-denumerate-enumerate [] = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
@@ -173,7 +170,7 @@ theorem-1 get eq s = begin
bff get eq s (get s)
≡⟨ cong (bff get eq s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
bff get eq s (get (map (denumerate s) (enumerate s)))
- ≡⟨ cong (bff get eq s) (free-theorem-list-list get (denumerate s) (enumerate s)) ⟩
+ ≡⟨ cong (bff get eq s) (free-theorem get (denumerate s) (enumerate s)) ⟩
bff get eq s (map (denumerate s) (get (enumerate s)))
≡⟨ refl ⟩
fmap (flip map (enumerate s) ∘ flip lookup) (fmap (flip union (fromFunc (denumerate s))) (assoc eq (get (enumerate s)) (map (denumerate s) (get (enumerate s)))))
@@ -237,7 +234,7 @@ theorem-2 get eq v s u p | h , ph = begin
just (get (map (flip lookup (union h (fromFunc (denumerate s)))) (enumerate s)))
∎) ⟩
get (map (flip lookup (union h (fromFunc (denumerate s)))) (enumerate s))
- ≡⟨ free-theorem-list-list get (flip lookup (union h (fromFunc (denumerate s)))) (enumerate s) ⟩
+ ≡⟨ free-theorem get (flip lookup (union h (fromFunc (denumerate s)))) (enumerate s) ⟩
map (flip lookup (union h (fromFunc (denumerate s)))) (get (enumerate s))
≡⟨ lemma-from-map-just (begin
map just (map (flip lookup (union h (fromFunc (denumerate s)))) (get (enumerate s)))