summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-09-26 22:02:48 +0200
commit8546a8812a4fdaf3e3d7a7ba3433894db8b25a14 (patch)
treecafa975b28934f1e972d0f01caf65f6298dae6ab /Bidir.agda
parente23173b45a08fde6dd2decdc2e985ec3df90231b (diff)
downloadbidiragda-8546a8812a4fdaf3e3d7a7ba3433894db8b25a14.tar.gz
use _\==n_ and _\notin_ instead of \neg
Consistent. Shorter.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda4
1 files changed, 2 insertions, 2 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 721b2b2..0720970 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -13,7 +13,7 @@ open import Data.Vec.Properties using (tabulate-∘ ; lookup∘tabulate ; map-co
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Empty using (⊥-elim)
open import Function using (id ; _∘_ ; flip)
-open import Relation.Nullary using (yes ; no ; ¬_)
+open import Relation.Nullary using (yes ; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.Core using (_≡_ ; refl)
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; _≗_ ; trans)
@@ -104,7 +104,7 @@ lemma-assoc-domain eq (i' ∷ is') (x' ∷ xs') h ph | just h' | [ ph' ] = apply
; wrong = λ x'' x'≢x'' lookupM-i'-h'≡just-x'' → lemma-just≢nothing (trans (sym ph) (lemma-checkInsert-wrong eq i' x' h' x'' x'≢x'' lookupM-i'-h'≡just-x''))
}
-lemma-map-lookupM-insert : {m n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (x : A) → (h : FinMapMaybe n A) → ¬(i ∈ (toList is)) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
+lemma-map-lookupM-insert : {m n : ℕ} {A : Set} → (eq : EqInst A) → (i : Fin n) → (is : Vec (Fin n) m) → (x : A) → (h : FinMapMaybe n A) → i ∉ (toList is) → (toList is) in-domain-of h → map (flip lookupM (insert i x h)) is ≡ map (flip lookupM h) is
lemma-map-lookupM-insert eq i [] x h i∉is ph = refl
lemma-map-lookupM-insert eq i (i' ∷ is') x h i∉is ph = begin
lookupM i' (insert i x h) ∷ map (flip lookupM (insert i x h)) is'