diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-03-05 08:46:28 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-03-05 08:46:28 +0100 |
commit | d1d4cf511883e1795ee1922a511cc4b0121c5bfa (patch) | |
tree | a329b1bb28022e23ee772550b6576a4f9048429a /Bidir.agda | |
parent | e08856e01eecdd1c06fe9607eb91b5ed5baaed02 (diff) | |
parent | cdaf8389007f1272f05089b75abecf8d6aefb49e (diff) | |
download | bidiragda-d1d4cf511883e1795ee1922a511cc4b0121c5bfa.tar.gz |
Merge branch feature-omit-sequence into master
Beyond allowing default values during shape updates, this branch simplifies
working with shapes other than Vec.
Diffstat (limited to 'Bidir.agda')
-rw-r--r-- | Bidir.agda | 71 |
1 files changed, 40 insertions, 31 deletions
@@ -26,7 +26,7 @@ import Relation.Binary.EqReasoning as EqR import GetTypes open GetTypes.PartialVecVec using (Get ; module Get) -open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid) +open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid ; just-injective) open import FinMap import CheckInsert open CheckInsert A @@ -123,7 +123,7 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin as ∎) where open ≡-Reasoning -theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just s +theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (map just s) theorem-1 G {i} s = begin bff G i s (get s) ≡⟨ cong (bff G i s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩ @@ -141,17 +141,17 @@ theorem-1 G {i} s = begin ≡⟨ cong (h′↦r ∘ just) (lemma-disjoint-union (denumerate s) (get (enumerate s))) ⟩ (h′↦r ∘ just) (fromFunc (denumerate s)) ≡⟨ refl ⟩ - mapMV (flip lookupM (fromFunc (denumerate s))) (enumerate s) - ≡⟨ mapMV-cong (lemma-lookupM-fromFunc (denumerate s)) (enumerate s) ⟩ - mapMV (Maybe.just ∘ denumerate s) (enumerate s) - ≡⟨ mapMV-purity (denumerate s) (enumerate s) ⟩ - just (map (denumerate s) (enumerate s)) - ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩ - just s ∎ + just (map (flip lookupM (fromFunc (denumerate s))) (enumerate s)) + ≡⟨ cong just (map-cong (lemma-lookupM-fromFunc (denumerate s)) (enumerate s)) ⟩ + just (map (Maybe.just ∘ denumerate s) (enumerate s)) + ≡⟨ cong just (map-∘ just (denumerate s) (enumerate s)) ⟩ + just (map just (map (denumerate s) (enumerate s))) + ≡⟨ cong (Maybe.just ∘ map just) (lemma-map-denumerate-enumerate s) ⟩ + just (map just s) ∎ where open ≡-Reasoning open Get G h↦h′ = _<$>_ (flip union (reshape (delete-many (get (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G i))) - h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupM) + h′↦r = _<$>_ (flip map (enumerate s) ∘ flip lookupM) lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a @@ -211,32 +211,41 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _)) sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _)) -theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v -theorem-2 G j s v u p with (lemma->>=-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p) +theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v +theorem-2 G j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p) theorem-2 G j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v) ph′) -theorem-2 G j s v u p | h′ , ph′ | h , ph = drop-just (begin - get <$> (just u) - ≡⟨ cong (_<$>_ get) (sym p) ⟩ - get <$> (bff G j s v) - ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩ - get <$> h′↦r (h↦h′ h) +theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩ + get u + ≡⟨ just-injective (trans (cong (_<$>_ get) (sym p)) + (cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph)) ⟩ + get (h′↦r (h↦h′ h)) ≡⟨ refl ⟩ - get <$> sequenceV (map (flip lookupM (h↦h′ h)) t) - ≡⟨ lemma-get-sequenceV G (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) ⟩ - sequenceV (get (map (flip lookupM (h↦h′ h)) t)) - ≡⟨ cong sequenceV (free-theorem (flip lookupM (h↦h′ h)) t) ⟩ - sequenceV (map (flip lookupM (h↦h′ h)) (get t)) - ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph)) ⟩ - sequenceV (map (flip lookupM h) (get t)) - ≈⟨ sequence-cong (lemma-2 (get t) v h ph) ⟩ - sequenceV (map just v) - ≡⟨ lemma-just-sequence v ⟩ - just v ∎) - where open EqR (MaybeSetoid (VecISetoid A.setoid at _)) + get (map (flip lookupM (h↦h′ h)) t) + ≡⟨ free-theorem (flip lookupM (h↦h′ h)) t ⟩ + map (flip lookupM (h↦h′ h)) (get t) + ≡⟨ lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph) ⟩ + map (flip lookupM h) (get t) + ≈⟨ lemma-2 (get t) v h ph ⟩ + map just v ∎ + where open SetoidReasoning open Get G s′ = enumerate s g = fromFunc (denumerate s) g′ = delete-many (get s′) g t = enumeratel (Get.|gl₁| G j) h↦h′ = flip union (reshape g′ (Get.|gl₁| G j)) - h′↦r = flip mapMV t ∘ flip lookupM + h′↦r = flip map t ∘ flip lookupM + +theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (map just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v +theorem-2′ G j s v u p = drop-just (begin + get <$> just u + ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence u)) ⟩ + get <$> sequenceV (map just u) + ≡⟨ lemma-get-sequenceV G (lemma-just-sequence u) ⟩ + sequenceV (get (map just u)) + ≈⟨ sequence-cong (theorem-2 G j s v (map just u) p) ⟩ + sequenceV (map just v) + ≡⟨ lemma-just-sequence v ⟩ + just v ∎) + where open EqR (MaybeSetoid (VecISetoid A.setoid at _)) + open Get G |