summaryrefslogtreecommitdiff
path: root/Bidir.agda
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-03-05 08:46:28 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-03-05 08:46:28 +0100
commitd1d4cf511883e1795ee1922a511cc4b0121c5bfa (patch)
treea329b1bb28022e23ee772550b6576a4f9048429a /Bidir.agda
parente08856e01eecdd1c06fe9607eb91b5ed5baaed02 (diff)
parentcdaf8389007f1272f05089b75abecf8d6aefb49e (diff)
downloadbidiragda-d1d4cf511883e1795ee1922a511cc4b0121c5bfa.tar.gz
Merge branch feature-omit-sequence into master
Beyond allowing default values during shape updates, this branch simplifies working with shapes other than Vec.
Diffstat (limited to 'Bidir.agda')
-rw-r--r--Bidir.agda71
1 files changed, 40 insertions, 31 deletions
diff --git a/Bidir.agda b/Bidir.agda
index 4d6524e..c9227e9 100644
--- a/Bidir.agda
+++ b/Bidir.agda
@@ -26,7 +26,7 @@ import Relation.Binary.EqReasoning as EqR
import GetTypes
open GetTypes.PartialVecVec using (Get ; module Get)
-open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid)
+open import Generic using (mapMV ; mapMV-cong ; mapMV-purity ; sequenceV ; VecISetoid ; just-injective)
open import FinMap
import CheckInsert
open CheckInsert A
@@ -123,7 +123,7 @@ lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
as ∎)
where open ≡-Reasoning
-theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just s
+theorem-1 : (G : Get) → {i : Get.|I| G} → (s : Vec Carrier (Get.|gl₁| G i)) → bff G i s (Get.get G s) ≡ just (map just s)
theorem-1 G {i} s = begin
bff G i s (get s)
≡⟨ cong (bff G i s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
@@ -141,17 +141,17 @@ theorem-1 G {i} s = begin
≡⟨ cong (h′↦r ∘ just) (lemma-disjoint-union (denumerate s) (get (enumerate s))) ⟩
(h′↦r ∘ just) (fromFunc (denumerate s))
≡⟨ refl ⟩
- mapMV (flip lookupM (fromFunc (denumerate s))) (enumerate s)
- ≡⟨ mapMV-cong (lemma-lookupM-fromFunc (denumerate s)) (enumerate s) ⟩
- mapMV (Maybe.just ∘ denumerate s) (enumerate s)
- ≡⟨ mapMV-purity (denumerate s) (enumerate s) ⟩
- just (map (denumerate s) (enumerate s))
- ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩
- just s ∎
+ just (map (flip lookupM (fromFunc (denumerate s))) (enumerate s))
+ ≡⟨ cong just (map-cong (lemma-lookupM-fromFunc (denumerate s)) (enumerate s)) ⟩
+ just (map (Maybe.just ∘ denumerate s) (enumerate s))
+ ≡⟨ cong just (map-∘ just (denumerate s) (enumerate s)) ⟩
+ just (map just (map (denumerate s) (enumerate s)))
+ ≡⟨ cong (Maybe.just ∘ map just) (lemma-map-denumerate-enumerate s) ⟩
+ just (map just s) ∎
where open ≡-Reasoning
open Get G
h↦h′ = _<$>_ (flip union (reshape (delete-many (get (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G i)))
- h′↦r = flip _>>=_ (flip mapMV (enumerate s) ∘ flip lookupM)
+ h′↦r = _<$>_ (flip map (enumerate s) ∘ flip lookupM)
lemma-<$>-just : {A B : Set} {f : A → B} {b : B} (ma : Maybe A) → f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
@@ -211,32 +211,41 @@ sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong
sequence-cong {S} {m₁ = just x ∷ xs} {m₂ = just y ∷ ys} (VecEq._∷-cong_ (just x≈y) xs≈ys) | nothing | nothing | nothing = Setoid.refl (MaybeSetoid (VecISetoid S at _))
sequence-cong {S} (VecEq._∷-cong_ nothing xs≈ys) = Setoid.refl (MaybeSetoid (VecISetoid S at _))
-theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v
-theorem-2 G j s v u p with (lemma->>=-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p)
+theorem-2 : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec (Maybe Carrier) (Get.|gl₁| G j)) → bff G j s v ≡ just u → VecISetoid (MaybeSetoid A.setoid) at _ ∋ Get.get G u ≈ map just v
+theorem-2 G j s v u p with (lemma-<$>-just ((flip union (reshape (delete-many (Get.get G (enumerate s)) (fromFunc (denumerate s))) (Get.|gl₁| G j))) <$> (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v)) p)
theorem-2 G j s v u p | h′ , ph′ with (lemma-<$>-just (assoc (Get.get G (enumeratel (Get.|gl₁| G j))) v) ph′)
-theorem-2 G j s v u p | h′ , ph′ | h , ph = drop-just (begin
- get <$> (just u)
- ≡⟨ cong (_<$>_ get) (sym p) ⟩
- get <$> (bff G j s v)
- ≡⟨ cong (_<$>_ get ∘ flip _>>=_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
- get <$> h′↦r (h↦h′ h)
+theorem-2 G j s v u p | h′ , ph′ | h , ph = begin⟨ VecISetoid (MaybeSetoid A.setoid) at _ ⟩
+ get u
+ ≡⟨ just-injective (trans (cong (_<$>_ get) (sym p))
+ (cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph)) ⟩
+ get (h′↦r (h↦h′ h))
≡⟨ refl ⟩
- get <$> sequenceV (map (flip lookupM (h↦h′ h)) t)
- ≡⟨ lemma-get-sequenceV G (trans (cong (flip _>>=_ h′↦r ∘ _<$>_ h↦h′) (sym ph)) p) ⟩
- sequenceV (get (map (flip lookupM (h↦h′ h)) t))
- ≡⟨ cong sequenceV (free-theorem (flip lookupM (h↦h′ h)) t) ⟩
- sequenceV (map (flip lookupM (h↦h′ h)) (get t))
- ≡⟨ cong sequenceV (lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph)) ⟩
- sequenceV (map (flip lookupM h) (get t))
- ≈⟨ sequence-cong (lemma-2 (get t) v h ph) ⟩
- sequenceV (map just v)
- ≡⟨ lemma-just-sequence v ⟩
- just v ∎)
- where open EqR (MaybeSetoid (VecISetoid A.setoid at _))
+ get (map (flip lookupM (h↦h′ h)) t)
+ ≡⟨ free-theorem (flip lookupM (h↦h′ h)) t ⟩
+ map (flip lookupM (h↦h′ h)) (get t)
+ ≡⟨ lemma-union-not-used h g′ (get t) (lemma-assoc-domain (get t) v h ph) ⟩
+ map (flip lookupM h) (get t)
+ ≈⟨ lemma-2 (get t) v h ph ⟩
+ map just v ∎
+ where open SetoidReasoning
open Get G
s′ = enumerate s
g = fromFunc (denumerate s)
g′ = delete-many (get s′) g
t = enumeratel (Get.|gl₁| G j)
h↦h′ = flip union (reshape g′ (Get.|gl₁| G j))
- h′↦r = flip mapMV t ∘ flip lookupM
+ h′↦r = flip map t ∘ flip lookupM
+
+theorem-2′ : (G : Get) → {i : Get.|I| G} → (j : Get.|I| G) → (s : Vec Carrier (Get.|gl₁| G i)) → (v : Vec Carrier (Get.|gl₂| G j)) → (u : Vec Carrier (Get.|gl₁| G j)) → bff G j s v ≡ just (map just u) → VecISetoid A.setoid at _ ∋ Get.get G u ≈ v
+theorem-2′ G j s v u p = drop-just (begin
+ get <$> just u
+ ≡⟨ cong (_<$>_ get) (sym (lemma-just-sequence u)) ⟩
+ get <$> sequenceV (map just u)
+ ≡⟨ lemma-get-sequenceV G (lemma-just-sequence u) ⟩
+ sequenceV (get (map just u))
+ ≈⟨ sequence-cong (theorem-2 G j s v (map just u) p) ⟩
+ sequenceV (map just v)
+ ≡⟨ lemma-just-sequence v ⟩
+ just v ∎)
+ where open EqR (MaybeSetoid (VecISetoid A.setoid at _))
+ open Get G