summaryrefslogtreecommitdiff
path: root/CheckInsert.agda
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-27 10:50:15 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-27 10:50:15 +0100
commit00e60d0339d3e0044abfb06b8f77e9f7a3ffdcfb (patch)
tree1a634eae43fb1656bda3f5a3bb856b744131c73d /CheckInsert.agda
parent2c37e0c2f32b4c6b5c121827a4abddf7fc1dd7e0 (diff)
parentaf1ea86b6e817a85d4d160833fc5d4bb89e2df7b (diff)
downloadbidiragda-00e60d0339d3e0044abfb06b8f77e9f7a3ffdcfb.tar.gz
Merge branch feature-decsetoid
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r--CheckInsert.agda50
1 files changed, 30 insertions, 20 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda
index 6926587..47af215 100644
--- a/CheckInsert.agda
+++ b/CheckInsert.agda
@@ -1,50 +1,58 @@
-open import Relation.Binary.Core using (Decidable ; _≡_)
+open import Level using () renaming (zero to â„“â‚€)
+open import Relation.Binary using (DecSetoid)
-module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
+module CheckInsert (A : DecSetoid â„“â‚€ â„“â‚€) where
open import Data.Nat using (â„•)
open import Data.Fin using (Fin)
open import Data.Fin.Props using (_≟_)
-open import Data.Maybe using (Maybe ; nothing ; just)
+open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeSetoid ; Eq to MaybeEq)
open import Data.List using (List ; [] ; _∷_)
-open import Relation.Nullary using (Dec ; yes ; no)
+open import Data.Vec using () renaming (_∷_ to _∷V_)
+open import Data.Vec.Equality using () renaming (module Equality to VecEq)
+open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
open import Relation.Nullary.Negation using (contradiction)
-open import Relation.Binary.Core using (refl ; _≢_)
+open import Relation.Binary using (Setoid ; IsPreorder ; module DecSetoid)
+open import Relation.Binary.Core using (refl ; _≡_ ; _≢_)
+import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans)
-open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open import FinMap
+open import Generic using (vecIsSetoid)
+
+private
+ open module A = DecSetoid A using (Carrier ; _≈_) renaming (_≟_ to deq)
checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier)
checkInsert i b m with lookupM i m
... | nothing = just (insert i b m)
... | just c with deq b c
-... | yes b≡c = just m
-... | no b≢c = nothing
+... | yes b≈c = just m
+... | no b≉c = nothing
data InsertionResult {n : ℕ} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where
- same : lookupM i h ≡ just x → InsertionResult i x h (just h)
+ same : (x' : Carrier) → x ≈ x' → lookupM i h ≡ just x' → InsertionResult i x h (just h)
new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h))
- wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing
+ wrong : (x' : Carrier) → ¬ (x ≈ x') → lookupM i h ≡ just x' → InsertionResult i x h nothing
insertionresult : {n : ℕ} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h)
insertionresult i x h with lookupM i h | inspect (lookupM i) h
insertionresult i x h | just x' | _ with deq x x'
-insertionresult i x h | just .x | [ il ] | yes refl = same il
-insertionresult i x h | just x' | [ il ] | no x≢x' = wrong x' x≢x' il
+insertionresult i x h | just x' | [ il ] | yes x≈x' = same x' x≈x' il
+insertionresult i x h | just x' | [ il ] | no x≉x' = wrong x' x≉x' il
insertionresult i x h | nothing | [ il ] = new il
lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m
lemma-checkInsert-same i x m p with lookupM i m
lemma-checkInsert-same i x m refl | .(just x) with deq x x
-lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl
-lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x
+lemma-checkInsert-same i x m refl | .(just x) | yes x≈x = refl
+lemma-checkInsert-same i x m refl | .(just x) | no x≉x = contradiction A.refl x≉x
lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m)
lemma-checkInsert-new i x m p with lookupM i m
lemma-checkInsert-new i x m refl | .nothing = refl
-lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
+lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → ¬ (x ≈ x') → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
lemma-checkInsert-wrong i x m x' d p with lookupM i m
lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x'
lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d
@@ -52,13 +60,13 @@ lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl
lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is)
-lemma-checkInsert-restrict f i is | ._ | same p = cong just (lemma-insert-same _ i (f i) p)
+lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = cong just (lemma-insert-same _ i (f i) (trans p (cong just (sym (lemma-lookupM-restrict i f is x p)))))
lemma-checkInsert-restrict f i is | ._ | new _ = refl
-lemma-checkInsert-restrict f i is | ._ | wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x
+lemma-checkInsert-restrict f i is | ._ | wrong x fi≉x p = contradiction (IsPreorder.reflexive (Setoid.isPreorder A.setoid) (lemma-lookupM-restrict i f is x p)) fi≉x
lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x
lemma-lookupM-checkInsert i j x y h h' pl ph' with checkInsert j y h | insertionresult j y h
-lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ = pl
+lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ _ _ = pl
lemma-lookupM-checkInsert i j x y h h' pl ph' | ._ | new _ with i ≟ j
lemma-lookupM-checkInsert i .i x y h h' pl ph' | ._ | new pl' | yes refl = lemma-just≢nothing pl pl'
lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no i≢j = begin
@@ -67,11 +75,13 @@ lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no iâ
lookupM i h
≡⟨ pl ⟩
just x ∎
+ where open Relation.Binary.PropositionalEquality.≡-Reasoning
+
lemma-lookupM-checkInsert i j x y h h' pl () | ._ | wrong _ _ _
lemma-lookupM-checkInsert-other : {n : ℕ} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h h' : FinMapMaybe n Carrier) → checkInsert j x h ≡ just h' → lookupM i h ≡ lookupM i h'
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' with lookupM j h
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' | just y with deq x y
-lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just .x | yes refl = refl
-lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≢y
+lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just y | yes x≈y = refl
+lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≉y
lemma-lookupM-checkInsert-other i j i≢j x h .(insert j x h) refl | nothing = lemma-lookupM-insert-other i j x h i≢j