diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-01-17 09:24:47 +0100 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-01-17 09:24:47 +0100 |
commit | 808b8da4b14b087c0dcace71fff3854a17cebe42 (patch) | |
tree | 213872ff0a7165dee7a9510f75d78d7b76ccc015 /CheckInsert.agda | |
parent | 5bf7ce31ca6928b13d6631591371e98933cb0b2d (diff) | |
download | bidiragda-808b8da4b14b087c0dcace71fff3854a17cebe42.tar.gz |
generalize checkInsert to arbitrary Setoids
This is another step towards permitting arbitrary Setoids in bff.
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r-- | CheckInsert.agda | 67 |
1 files changed, 37 insertions, 30 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda index d82c40b..9302fc7 100644 --- a/CheckInsert.agda +++ b/CheckInsert.agda @@ -1,73 +1,78 @@ -open import Relation.Binary.Core using (Decidable ; _≡_) +open import Level using () renaming (zero to â„“â‚€) +open import Relation.Binary using (DecSetoid) -module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where +module CheckInsert (A : DecSetoid â„“â‚€ â„“â‚€) where open import Data.Nat using (â„•) open import Data.Fin using (Fin) open import Data.Fin.Props using (_≟_) -open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeEq) +open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeSetoid ; Eq to MaybeEq) open import Data.List using (List ; [] ; _∷_) open import Data.Vec using () renaming (_∷_ to _∷V_) open import Data.Vec.Equality using () renaming (module Equality to VecEq) -open import Relation.Nullary using (Dec ; yes ; no) +open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Nullary.Negation using (contradiction) -open import Relation.Binary using (Setoid) -open import Relation.Binary.Core using (refl ; _≢_) -open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) renaming (setoid to PropEq) -open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) +open import Relation.Binary using (Setoid ; IsPreorder ; module DecSetoid) +open import Relation.Binary.Core using (refl ; _≡_ ; _≢_) +import Relation.Binary.EqReasoning as EqR +open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) open import FinMap -open import Generic using (maybeEq-from-≡ ; vecIsSetoid) +open import Generic using (vecIsSetoid) + +private + open module A = DecSetoid A using (Carrier ; _≈_) renaming (_≟_ to deq) checkInsert : {n : â„•} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier) checkInsert i b m with lookupM i m ... | nothing = just (insert i b m) ... | just c with deq b c -... | yes b≡c = just m -... | no b≢c = nothing +... | yes b≈c = just m +... | no b≉c = nothing data InsertionResult {n : â„•} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where - same : lookupM i h ≡ just x → InsertionResult i x h (just h) + same : (x' : Carrier) → x ≈ x' → lookupM i h ≡ just x' → InsertionResult i x h (just h) new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h)) - wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing + wrong : (x' : Carrier) → ¬ (x ≈ x') → lookupM i h ≡ just x' → InsertionResult i x h nothing insertionresult : {n : â„•} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h) insertionresult i x h with lookupM i h | inspect (lookupM i) h insertionresult i x h | just x' | _ with deq x x' -insertionresult i x h | just .x | [ il ] | yes refl = same il -insertionresult i x h | just x' | [ il ] | no x≢x' = wrong x' x≢x' il +insertionresult i x h | just x' | [ il ] | yes x≈x' = same x' x≈x' il +insertionresult i x h | just x' | [ il ] | no x≉x' = wrong x' x≉x' il insertionresult i x h | nothing | [ il ] = new il lemma-checkInsert-same : {n : â„•} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m lemma-checkInsert-same i x m p with lookupM i m lemma-checkInsert-same i x m refl | .(just x) with deq x x -lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl -lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x +lemma-checkInsert-same i x m refl | .(just x) | yes x≈x = refl +lemma-checkInsert-same i x m refl | .(just x) | no x≉x = contradiction A.refl x≉x lemma-checkInsert-new : {n : â„•} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m) lemma-checkInsert-new i x m p with lookupM i m lemma-checkInsert-new i x m refl | .nothing = refl -lemma-checkInsert-wrong : {n : â„•} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing +lemma-checkInsert-wrong : {n : â„•} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → ¬ (x ≈ x') → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing lemma-checkInsert-wrong i x m x' d p with lookupM i m lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x' lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl -vecSetoidToProp : {A : Set} {n : â„•} {x y : Setoid.Carrier (vecIsSetoid (MaybeEq (PropEq A)) n)} → Setoid._≈_ (vecIsSetoid (MaybeEq (PropEq A)) n) x y → x ≡ y -vecSetoidToProp VecEq.[]-cong = refl -vecSetoidToProp (just refl VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p) -vecSetoidToProp (nothing VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p) - -lemma-checkInsert-restrict : {n : â„•} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is)) +lemma-checkInsert-restrict : {n : â„•} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → Setoid._≈_ (MaybeSetoid (vecIsSetoid (MaybeSetoid A.setoid) n)) (checkInsert i (f i) (restrict f is)) (just (restrict f (i ∷ is))) lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is) -lemma-checkInsert-restrict f i is | ._ | same p = cong just (vecSetoidToProp (lemma-insert-same _ i (f i) (maybeEq-from-≡ p))) -lemma-checkInsert-restrict f i is | ._ | new _ = refl -lemma-checkInsert-restrict f i is | ._ | wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x +lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = MaybeEq.just (lemma-insert-same _ i (f i) (begin + lookupM i (restrict f is) + ≡⟨ p ⟩ + just x + ≈⟨ MaybeEq.just (Setoid.sym A.setoid fi≈x) ⟩ + just (f i) ∎)) + where open EqR (MaybeSetoid A.setoid) +lemma-checkInsert-restrict f i is | ._ | new _ = Setoid.refl (MaybeSetoid (vecIsSetoid (MaybeSetoid A.setoid) _)) +lemma-checkInsert-restrict f i is | ._ | wrong x fi≉x p = contradiction (IsPreorder.reflexive (Setoid.isPreorder A.setoid) (lemma-lookupM-restrict i f is x p)) fi≉x lemma-lookupM-checkInsert : {n : â„•} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x lemma-lookupM-checkInsert i j x y h h' pl ph' with checkInsert j y h | insertionresult j y h -lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ = pl +lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ _ _ = pl lemma-lookupM-checkInsert i j x y h h' pl ph' | ._ | new _ with i ≟ j lemma-lookupM-checkInsert i .i x y h h' pl ph' | ._ | new pl' | yes refl = lemma-just≢nothing pl pl' lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no i≢j = begin @@ -76,11 +81,13 @@ lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no iâ lookupM i h ≡⟨ pl ⟩ just x ∎ + where open Relation.Binary.PropositionalEquality.≡-Reasoning + lemma-lookupM-checkInsert i j x y h h' pl () | ._ | wrong _ _ _ lemma-lookupM-checkInsert-other : {n : â„•} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h h' : FinMapMaybe n Carrier) → checkInsert j x h ≡ just h' → lookupM i h ≡ lookupM i h' lemma-lookupM-checkInsert-other i j i≢j x h h' ph' with lookupM j h lemma-lookupM-checkInsert-other i j i≢j x h h' ph' | just y with deq x y -lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just .x | yes refl = refl -lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≢y +lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just y | yes x≈y = refl +lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≉y lemma-lookupM-checkInsert-other i j i≢j x h .(insert j x h) refl | nothing = lemma-lookupM-insert-other i j x h i≢j |