summaryrefslogtreecommitdiff
path: root/CheckInsert.agda
diff options
context:
space:
mode:
authorHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-17 09:24:47 +0100
committerHelmut Grohne <grohne@cs.uni-bonn.de>2014-01-17 09:24:47 +0100
commit808b8da4b14b087c0dcace71fff3854a17cebe42 (patch)
tree213872ff0a7165dee7a9510f75d78d7b76ccc015 /CheckInsert.agda
parent5bf7ce31ca6928b13d6631591371e98933cb0b2d (diff)
downloadbidiragda-808b8da4b14b087c0dcace71fff3854a17cebe42.tar.gz
generalize checkInsert to arbitrary Setoids
This is another step towards permitting arbitrary Setoids in bff.
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r--CheckInsert.agda67
1 files changed, 37 insertions, 30 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda
index d82c40b..9302fc7 100644
--- a/CheckInsert.agda
+++ b/CheckInsert.agda
@@ -1,73 +1,78 @@
-open import Relation.Binary.Core using (Decidable ; _≡_)
+open import Level using () renaming (zero to â„“â‚€)
+open import Relation.Binary using (DecSetoid)
-module CheckInsert (Carrier : Set) (deq : Decidable {A = Carrier} _≡_) where
+module CheckInsert (A : DecSetoid â„“â‚€ â„“â‚€) where
open import Data.Nat using (â„•)
open import Data.Fin using (Fin)
open import Data.Fin.Props using (_≟_)
-open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeEq)
+open import Data.Maybe using (Maybe ; nothing ; just) renaming (setoid to MaybeSetoid ; Eq to MaybeEq)
open import Data.List using (List ; [] ; _∷_)
open import Data.Vec using () renaming (_∷_ to _∷V_)
open import Data.Vec.Equality using () renaming (module Equality to VecEq)
-open import Relation.Nullary using (Dec ; yes ; no)
+open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
open import Relation.Nullary.Negation using (contradiction)
-open import Relation.Binary using (Setoid)
-open import Relation.Binary.Core using (refl ; _≢_)
-open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans) renaming (setoid to PropEq)
-open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
+open import Relation.Binary using (Setoid ; IsPreorder ; module DecSetoid)
+open import Relation.Binary.Core using (refl ; _≡_ ; _≢_)
+import Relation.Binary.EqReasoning as EqR
+open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; [_] ; trans)
open import FinMap
-open import Generic using (maybeEq-from-≡ ; vecIsSetoid)
+open import Generic using (vecIsSetoid)
+
+private
+ open module A = DecSetoid A using (Carrier ; _≈_) renaming (_≟_ to deq)
checkInsert : {n : ℕ} → Fin n → Carrier → FinMapMaybe n Carrier → Maybe (FinMapMaybe n Carrier)
checkInsert i b m with lookupM i m
... | nothing = just (insert i b m)
... | just c with deq b c
-... | yes b≡c = just m
-... | no b≢c = nothing
+... | yes b≈c = just m
+... | no b≉c = nothing
data InsertionResult {n : ℕ} (i : Fin n) (x : Carrier) (h : FinMapMaybe n Carrier) : Maybe (FinMapMaybe n Carrier) → Set where
- same : lookupM i h ≡ just x → InsertionResult i x h (just h)
+ same : (x' : Carrier) → x ≈ x' → lookupM i h ≡ just x' → InsertionResult i x h (just h)
new : lookupM i h ≡ nothing → InsertionResult i x h (just (insert i x h))
- wrong : (x' : Carrier) → x ≢ x' → lookupM i h ≡ just x' → InsertionResult i x h nothing
+ wrong : (x' : Carrier) → ¬ (x ≈ x') → lookupM i h ≡ just x' → InsertionResult i x h nothing
insertionresult : {n : ℕ} → (i : Fin n) → (x : Carrier) → (h : FinMapMaybe n Carrier) → InsertionResult i x h (checkInsert i x h)
insertionresult i x h with lookupM i h | inspect (lookupM i) h
insertionresult i x h | just x' | _ with deq x x'
-insertionresult i x h | just .x | [ il ] | yes refl = same il
-insertionresult i x h | just x' | [ il ] | no x≢x' = wrong x' x≢x' il
+insertionresult i x h | just x' | [ il ] | yes x≈x' = same x' x≈x' il
+insertionresult i x h | just x' | [ il ] | no x≉x' = wrong x' x≉x' il
insertionresult i x h | nothing | [ il ] = new il
lemma-checkInsert-same : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ just x → checkInsert i x m ≡ just m
lemma-checkInsert-same i x m p with lookupM i m
lemma-checkInsert-same i x m refl | .(just x) with deq x x
-lemma-checkInsert-same i x m refl | .(just x) | yes refl = refl
-lemma-checkInsert-same i x m refl | .(just x) | no x≢x = contradiction refl x≢x
+lemma-checkInsert-same i x m refl | .(just x) | yes x≈x = refl
+lemma-checkInsert-same i x m refl | .(just x) | no x≉x = contradiction A.refl x≉x
lemma-checkInsert-new : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → lookupM i m ≡ nothing → checkInsert i x m ≡ just (insert i x m)
lemma-checkInsert-new i x m p with lookupM i m
lemma-checkInsert-new i x m refl | .nothing = refl
-lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → x ≢ x' → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
+lemma-checkInsert-wrong : {n : ℕ} → (i : Fin n) → (x : Carrier) → (m : FinMapMaybe n Carrier) → (x' : Carrier) → ¬ (x ≈ x') → lookupM i m ≡ just x' → checkInsert i x m ≡ nothing
lemma-checkInsert-wrong i x m x' d p with lookupM i m
lemma-checkInsert-wrong i x m x' d refl | .(just x') with deq x x'
lemma-checkInsert-wrong i x m x' d refl | .(just x') | yes q = contradiction q d
lemma-checkInsert-wrong i x m x' d refl | .(just x') | no ¬q = refl
-vecSetoidToProp : {A : Set} {n : ℕ} {x y : Setoid.Carrier (vecIsSetoid (MaybeEq (PropEq A)) n)} → Setoid._≈_ (vecIsSetoid (MaybeEq (PropEq A)) n) x y → x ≡ y
-vecSetoidToProp VecEq.[]-cong = refl
-vecSetoidToProp (just refl VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p)
-vecSetoidToProp (nothing VecEq.∷-cong p) = cong (_∷V_ _) (vecSetoidToProp p)
-
-lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
+lemma-checkInsert-restrict : {n : ℕ} → (f : Fin n → Carrier) → (i : Fin n) → (is : List (Fin n)) → Setoid._≈_ (MaybeSetoid (vecIsSetoid (MaybeSetoid A.setoid) n)) (checkInsert i (f i) (restrict f is)) (just (restrict f (i ∷ is)))
lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is) | insertionresult i (f i) (restrict f is)
-lemma-checkInsert-restrict f i is | ._ | same p = cong just (vecSetoidToProp (lemma-insert-same _ i (f i) (maybeEq-from-≡ p)))
-lemma-checkInsert-restrict f i is | ._ | new _ = refl
-lemma-checkInsert-restrict f i is | ._ | wrong x fi≢x p = contradiction (lemma-lookupM-restrict i f is x p) fi≢x
+lemma-checkInsert-restrict f i is | ._ | same x fi≈x p = MaybeEq.just (lemma-insert-same _ i (f i) (begin
+ lookupM i (restrict f is)
+ ≡⟨ p ⟩
+ just x
+ ≈⟨ MaybeEq.just (Setoid.sym A.setoid fi≈x) ⟩
+ just (f i) ∎))
+ where open EqR (MaybeSetoid A.setoid)
+lemma-checkInsert-restrict f i is | ._ | new _ = Setoid.refl (MaybeSetoid (vecIsSetoid (MaybeSetoid A.setoid) _))
+lemma-checkInsert-restrict f i is | ._ | wrong x fi≉x p = contradiction (IsPreorder.reflexive (Setoid.isPreorder A.setoid) (lemma-lookupM-restrict i f is x p)) fi≉x
lemma-lookupM-checkInsert : {n : ℕ} → (i j : Fin n) → (x y : Carrier) → (h h' : FinMapMaybe n Carrier) → lookupM i h ≡ just x → checkInsert j y h ≡ just h' → lookupM i h' ≡ just x
lemma-lookupM-checkInsert i j x y h h' pl ph' with checkInsert j y h | insertionresult j y h
-lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ = pl
+lemma-lookupM-checkInsert i j x y h .h pl refl | ._ | same _ _ _ = pl
lemma-lookupM-checkInsert i j x y h h' pl ph' | ._ | new _ with i ≟ j
lemma-lookupM-checkInsert i .i x y h h' pl ph' | ._ | new pl' | yes refl = lemma-just≢nothing pl pl'
lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no i≢j = begin
@@ -76,11 +81,13 @@ lemma-lookupM-checkInsert i j x y h .(insert j y h) pl refl | ._ | new _ | no iâ
lookupM i h
≡⟨ pl ⟩
just x ∎
+ where open Relation.Binary.PropositionalEquality.≡-Reasoning
+
lemma-lookupM-checkInsert i j x y h h' pl () | ._ | wrong _ _ _
lemma-lookupM-checkInsert-other : {n : ℕ} → (i j : Fin n) → i ≢ j → (x : Carrier) → (h h' : FinMapMaybe n Carrier) → checkInsert j x h ≡ just h' → lookupM i h ≡ lookupM i h'
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' with lookupM j h
lemma-lookupM-checkInsert-other i j i≢j x h h' ph' | just y with deq x y
-lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just .x | yes refl = refl
-lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≢y
+lemma-lookupM-checkInsert-other i j i≢j x h .h refl | just y | yes x≈y = refl
+lemma-lookupM-checkInsert-other i j i≢j x h h' () | just y | no x≉y
lemma-lookupM-checkInsert-other i j i≢j x h .(insert j x h) refl | nothing = lemma-lookupM-insert-other i j x h i≢j