summaryrefslogtreecommitdiff
path: root/CheckInsert.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-06-05 14:12:10 +0200
committerHelmut Grohne <helmut@subdivi.de>2012-06-05 14:12:10 +0200
commita98ec27d280b41b86fad060aff60c3e9037fc669 (patch)
tree928b0f0f89e27dd92363a3621c2b2d2b6ab10884 /CheckInsert.agda
parentddb751df76c004d788ed09c3ed54c562c99afb7b (diff)
downloadbidiragda-a98ec27d280b41b86fad060aff60c3e9037fc669.tar.gz
move checkInsert and related properties to CheckInsert.agda
Diffstat (limited to 'CheckInsert.agda')
-rw-r--r--CheckInsert.agda93
1 files changed, 93 insertions, 0 deletions
diff --git a/CheckInsert.agda b/CheckInsert.agda
new file mode 100644
index 0000000..6c168e2
--- /dev/null
+++ b/CheckInsert.agda
@@ -0,0 +1,93 @@
+module CheckInsert where
+
+open import Data.Nat using (ℕ)
+open import Data.Fin using (Fin)
+open import Data.Fin.Props using (_≟_)
+open import Data.Maybe using (Maybe ; nothing ; just)
+open import Data.List using (List ; [] ; _∷_)
+open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
+open import Relation.Nullary.Negation using (contradiction)
+open import Relation.Binary.Core using (_≡_ ; refl)
+open import Relation.Binary.PropositionalEquality using (cong ; sym ; inspect ; Reveal_is_ ; trans)
+open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
+
+open import FinMap
+
+EqInst : Set → Set
+EqInst A = (x y : A) → Dec (x ≡ y)
+
+checkInsert : {A : Set} {n : ℕ} → EqInst A → Fin n → A → FinMapMaybe n A → Maybe (FinMapMaybe n A)
+checkInsert eq i b m with lookupM i m
+checkInsert eq i b m | just c with eq b c
+checkInsert eq i b m | just .b | yes refl = just m
+checkInsert eq i b m | just c | no ¬p = nothing
+checkInsert eq i b m | nothing = just (insert i b m)
+
+record checkInsertProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (P : Set) : Set where
+ field
+ same : lookupM i m ≡ just x → P
+ new : lookupM i m ≡ nothing → P
+ wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → P
+
+apply-checkInsertProof : {A P : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → checkInsertProof eq i x m P → P
+apply-checkInsertProof eq i x m rp with lookupM i m | inspect (lookupM i) m
+apply-checkInsertProof eq i x m rp | just x' | il with eq x x'
+apply-checkInsertProof eq i x m rp | just .x | Reveal_is_.[_] il | yes refl = checkInsertProof.same rp il
+apply-checkInsertProof eq i x m rp | just x' | Reveal_is_.[_] il | no x≢x' = checkInsertProof.wrong rp x' x≢x' il
+apply-checkInsertProof eq i x m rp | nothing | Reveal_is_.[_] il = checkInsertProof.new rp il
+
+lemma-checkInsert-same : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ just x → checkInsert eq i x m ≡ just m
+lemma-checkInsert-same eq i x m p with lookupM i m
+lemma-checkInsert-same eq i x m refl | .(just x) with eq x x
+lemma-checkInsert-same eq i x m refl | .(just x) | yes refl = refl
+lemma-checkInsert-same eq i x m refl | .(just x) | no x≢x = contradiction refl x≢x
+
+lemma-checkInsert-new : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → lookupM i m ≡ nothing → checkInsert eq i x m ≡ just (insert i x m)
+lemma-checkInsert-new eq i x m p with lookupM i m
+lemma-checkInsert-new eq i x m refl | .nothing = refl
+
+lemma-checkInsert-wrong : {A : Set} {n : ℕ} → (eq : EqInst A) → (i : Fin n) → (x : A) → (m : FinMapMaybe n A) → (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → checkInsert eq i x m ≡ nothing
+lemma-checkInsert-wrong eq i x m x' d p with lookupM i m
+lemma-checkInsert-wrong eq i x m x' d refl | .(just x') with eq x x'
+lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | yes q = contradiction q d
+lemma-checkInsert-wrong eq i x m x' d refl | .(just x') | no ¬q = refl
+
+record checkInsertEqualProof {A : Set} {n : ℕ} (eq : EqInst A) (i : Fin n) (x : A) (m : FinMapMaybe n A) (e : Maybe (FinMapMaybe n A)) : Set where
+ field
+ same : lookupM i m ≡ just x → just m ≡ e
+ new : lookupM i m ≡ nothing → just (insert i x m) ≡ e
+ wrong : (x' : A) → ¬(x ≡ x') → lookupM i m ≡ just x' → nothing ≡ e
+
+lift-checkInsertProof : {A : Set} {n : ℕ} {eq : EqInst A} {i : Fin n} {x : A} {m : FinMapMaybe n A} {e : Maybe (FinMapMaybe n A)} → checkInsertEqualProof eq i x m e → checkInsertProof eq i x m (checkInsert eq i x m ≡ e)
+lift-checkInsertProof {_} {_} {eq} {i} {x} {m} o = record
+ { same = λ p → trans (lemma-checkInsert-same eq i x m p) (checkInsertEqualProof.same o p)
+ ; new = λ p → trans (lemma-checkInsert-new eq i x m p) (checkInsertEqualProof.new o p)
+ ; wrong = λ x' q p → trans (lemma-checkInsert-wrong eq i x m x' q p) (checkInsertEqualProof.wrong o x' q p)
+ }
+
+lemma-checkInsert-restrict : {τ : Set} {n : ℕ} → (eq : EqInst τ) → (f : Fin n → τ) → (i : Fin n) → (is : List (Fin n)) → checkInsert eq i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))
+lemma-checkInsert-restrict {τ} eq f i is = apply-checkInsertProof eq i (f i) (restrict f is) (lift-checkInsertProof record
+ { same = λ lookupM≡justx → cong just (lemma-insert-same (restrict f is) i (f i) lookupM≡justx)
+ ; new = λ lookupM≡nothing → refl
+ ; wrong = λ x' x≢x' lookupM≡justx' → contradiction (lemma-lookupM-restrict i f is x' lookupM≡justx') x≢x'
+ })
+
+lemma-lookupM-checkInsert : {A : Set} {n : ℕ} → (eq : EqInst A) → (i j : Fin n) → (x y : A) → (h h' : FinMapMaybe n A) → lookupM i h ≡ just x → checkInsert eq j y h ≡ just h' → lookupM i h' ≡ just x
+lemma-lookupM-checkInsert eq i j x y h h' pl ph' with lookupM j h | inspect (lookupM j) h
+lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' with i ≟ j
+lemma-lookupM-checkInsert eq i .i x y h .(insert i y h) pl refl | nothing | Reveal_is_.[_] pl' | yes refl with begin just x ≡⟨ sym pl ⟩ lookupM i h ≡⟨ pl' ⟩ nothing ∎
+... | ()
+lemma-lookupM-checkInsert eq i j x y h .(insert j y h) pl refl | nothing | pl' | no ¬p = begin
+ lookupM i (insert j y h)
+ ≡⟨ sym (lemma-lookupM-insert-other i j y h ¬p) ⟩
+ lookupM i h
+ ≡⟨ pl ⟩
+ just x ∎
+lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just z | pl' with eq y z
+lemma-lookupM-checkInsert eq i j x y h h' pl ph' | just .y | pl' | yes refl = begin
+ lookupM i h'
+ ≡⟨ cong (lookupM i) (lemma-from-just (sym ph')) ⟩
+ lookupM i h
+ ≡⟨ pl ⟩
+ just x ∎
+lemma-lookupM-checkInsert eq i j x y h h' pl () | just z | pl' | no ¬p