diff options
author | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-10-20 17:01:38 +0200 |
---|---|---|
committer | Helmut Grohne <grohne@cs.uni-bonn.de> | 2014-10-20 17:04:10 +0200 |
commit | 2991f01c1867d6431d50d0e1309522b005de4bde (patch) | |
tree | cc7cb093ff2d59d04a861038c13b8fcbb5d260d2 /FinMap.agda | |
parent | 58bce3d887d1e5fef24254098819dd09e900fb4c (diff) | |
download | bidiragda-2991f01c1867d6431d50d0e1309522b005de4bde.tar.gz |
change restrict and fromAscList to work with Vec
While they do work with Lists and there is no inherent need to know the
length, they are most often invoked in a context where a Vec needs to be
converted to a List using toList. By changing them to work with Vec,
quite a few toList calls can be dropped.
Diffstat (limited to 'FinMap.agda')
-rw-r--r-- | FinMap.agda | 27 |
1 files changed, 13 insertions, 14 deletions
diff --git a/FinMap.agda b/FinMap.agda index f9572b8..ccd522e 100644 --- a/FinMap.agda +++ b/FinMap.agda @@ -5,11 +5,10 @@ open import Data.Nat using (ℕ ; zero ; suc) open import Data.Maybe using (Maybe ; just ; nothing ; maybe′) renaming (setoid to MaybeEq) open import Data.Fin using (Fin ; zero ; suc) open import Data.Fin.Props using (_≟_) -open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; toList) renaming (lookup to lookupVec ; map to mapV) +open import Data.Vec using (Vec ; [] ; _∷_ ; _[_]≔_ ; replicate ; tabulate ; foldr ; zip) renaming (lookup to lookupVec ; map to mapV) open import Data.Vec.Equality using () open Data.Vec.Equality.Equality using (_∷-cong_) open import Data.Vec.Properties using (lookup∘tabulate) -open import Data.List using (List ; [] ; _∷_ ; map ; zip) open import Data.Product using (_×_ ; _,_) open import Function using (id ; _∘_ ; flip ; const) open import Relation.Nullary using (yes ; no) @@ -33,7 +32,7 @@ insert f a m = m [ f ]≔ (just a) empty : {A : Set} {n : ℕ} → FinMapMaybe n A empty = replicate nothing -fromAscList : {A : Set} {n : ℕ} → List (Fin n × A) → FinMapMaybe n A +fromAscList : {A : Set} {n m : ℕ} → Vec (Fin n × A) m → FinMapMaybe n A fromAscList [] = empty fromAscList ((f , a) ∷ xs) = insert f a (fromAscList xs) @@ -48,8 +47,8 @@ reshape (x ∷ xs) (suc l) = x ∷ (reshape xs l) union : {A : Set} {n : ℕ} → FinMapMaybe n A → FinMapMaybe n A → FinMapMaybe n A union m1 m2 = tabulate (λ f → maybe′ just (lookupM f m2) (lookupM f m1)) -restrict : {A : Set} {n : ℕ} → (Fin n → A) → List (Fin n) → FinMapMaybe n A -restrict f is = fromAscList (zip is (map f is)) +restrict : {A : Set} {n m : ℕ} → (Fin n → A) → Vec (Fin n) m → FinMapMaybe n A +restrict f is = fromAscList (zip is (mapV f is)) delete : {A : Set} {n : ℕ} → Fin n → FinMapMaybe n A → FinMapMaybe n A delete i m = m [ i ]≔ nothing @@ -76,7 +75,7 @@ lemma-lookupM-insert-other zero (suc j) a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) zero a (x ∷ xs) p = refl lemma-lookupM-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookupM-insert-other i j a xs (p ∘ cong suc) -lemma-lookupM-restrict : {A : Set} {n : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : List (Fin n)) → (a : A) → lookupM i (restrict f is) ≡ just a → f i ≡ a +lemma-lookupM-restrict : {A : Set} {n m : ℕ} → (i : Fin n) → (f : Fin n → A) → (is : Vec (Fin n) m) → (a : A) → lookupM i (restrict f is) ≡ just a → f i ≡ a lemma-lookupM-restrict i f [] a p = contradiction (trans (sym p) (lemma-lookupM-empty i)) (λ ()) lemma-lookupM-restrict i f (i' ∷ is) a p with i ≟ i' lemma-lookupM-restrict i f (.i ∷ is) a p | yes refl = just-injective (begin @@ -110,9 +109,9 @@ lemma-reshape-id : {n : ℕ} {A : Set} → (m : FinMapMaybe n A) → reshape m n lemma-reshape-id [] = refl lemma-reshape-id (x ∷ xs) = cong (_∷_ x) (lemma-reshape-id xs) -lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f (toList t)) (delete-many t (fromFunc f)) ≡ fromFunc f +lemma-disjoint-union : {n m : ℕ} {A : Set} → (f : Fin n → A) → (t : Vec (Fin n) m) → union (restrict f t) (delete-many t (fromFunc f)) ≡ fromFunc f lemma-disjoint-union {n} {m} f t = lemma-tabulate-∘ (lemma-inner t) - where lemma-inner : {m : ℕ} → (t : Vec (Fin n) m) → (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f (toList t))) ≡ just (f x) + where lemma-inner : {m : ℕ} → (t : Vec (Fin n) m) → (x : Fin n) → maybe′ just (lookupM x (delete-many t (fromFunc f))) (lookupM x (restrict f t)) ≡ just (f x) lemma-inner [] x = begin maybe′ just (lookupM x (fromFunc f)) (lookupM x empty) ≡⟨ cong (maybe′ just (lookupM x (fromFunc f))) (lemma-lookupM-empty x) ⟩ @@ -120,12 +119,12 @@ lemma-disjoint-union {n} {m} f t = lemma-tabulate-∘ (lemma-inner t) ≡⟨ lemma-lookupM-fromFunc f x ⟩ just (f x) ∎ lemma-inner (t ∷ ts) x with x ≟ t - lemma-inner (.x ∷ ts) x | yes refl = cong (maybe′ just (lookupM x (delete-many (x ∷ ts) (fromFunc f)))) (lemma-lookupM-insert x (f x) (restrict f (toList ts))) + lemma-inner (.x ∷ ts) x | yes refl = cong (maybe′ just (lookupM x (delete-many (x ∷ ts) (fromFunc f)))) (lemma-lookupM-insert x (f x) (restrict f ts)) lemma-inner (t ∷ ts) x | no ¬p = begin - maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f (toList (t ∷ ts)))) - ≡⟨ cong (maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f)))) (lemma-lookupM-insert-other x t (f t) (restrict f (toList ts)) ¬p) ⟩ - maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f (toList ts))) - ≡⟨ cong (flip (maybe′ just) (lookupM x (restrict f (toList ts)))) (lemma-lookupM-delete (delete-many ts (fromFunc f)) ¬p) ⟩ - maybe′ just (lookupM x (delete-many ts (fromFunc f))) (lookupM x (restrict f (toList ts))) + maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f (t ∷ ts))) + ≡⟨ cong (maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f)))) (lemma-lookupM-insert-other x t (f t) (restrict f ts) ¬p) ⟩ + maybe′ just (lookupM x (delete-many (t ∷ ts) (fromFunc f))) (lookupM x (restrict f ts)) + ≡⟨ cong (flip (maybe′ just) (lookupM x (restrict f ts))) (lemma-lookupM-delete (delete-many ts (fromFunc f)) ¬p) ⟩ + maybe′ just (lookupM x (delete-many ts (fromFunc f))) (lookupM x (restrict f ts)) ≡⟨ lemma-inner ts x ⟩ just (f x) ∎ |