summaryrefslogtreecommitdiff
path: root/FinMap.agda
diff options
context:
space:
mode:
authorHelmut Grohne <helmut@subdivi.de>2012-11-22 15:20:29 +0100
committerHelmut Grohne <helmut@subdivi.de>2012-11-22 15:20:29 +0100
commite309253739ad0e3d9172e0b29156a5c88bbc9dbb (patch)
treed4613832c8edc390fd229e8c1f583b83775af359 /FinMap.agda
parentb9ce912e6a50be76ad2495fb110a79e93c591401 (diff)
downloadbidiragda-e309253739ad0e3d9172e0b29156a5c88bbc9dbb.tar.gz
shorten line lengths lemma-union-restrict
Diffstat (limited to 'FinMap.agda')
-rw-r--r--FinMap.agda16
1 files changed, 8 insertions, 8 deletions
diff --git a/FinMap.agda b/FinMap.agda
index c085b24..bdead33 100644
--- a/FinMap.agda
+++ b/FinMap.agda
@@ -101,14 +101,14 @@ lemma-tabulate-∘ {suc n} {_} {f} {g} f≗g = begin
g zero ∷ tabulate (g ∘ suc) ∎
lemma-union-restrict : {n : ℕ} {A : Set} → (f : Fin n → A) → (is : List (Fin n)) → union (restrict f is) (fromFunc f) ≡ fromFunc f
-lemma-union-restrict f is = begin
+lemma-union-restrict {n} f is = begin
union (restrict f is) (fromFunc f)
≡⟨ refl ⟩
tabulate (λ j → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)))
- ≡⟨ lemma-tabulate-∘ (lemma-inner f is) ⟩
+ ≡⟨ lemma-tabulate-∘ (lemma-inner is) ⟩
tabulate f ∎
- where lemma-inner : {n : ℕ} {A : Set} (f : Fin n → A) → (is : List (Fin n)) → (j : Fin n) → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)) ≡ f j
- lemma-inner f [] j = begin
+ where lemma-inner : (is : List (Fin n)) → (j : Fin n) → maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is)) ≡ f j
+ lemma-inner [] j = begin
maybe′ id (lookup j (fromFunc f)) (lookupM j empty)
≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-empty j) ⟩
maybe′ id (lookup j (fromFunc f)) nothing
@@ -116,11 +116,11 @@ lemma-union-restrict f is = begin
lookup j (fromFunc f)
≡⟨ lookup∘tabulate f j ⟩
f j ∎
- lemma-inner f (i ∷ is) j with j ≟ i
- lemma-inner f (.j ∷ is) j | yes refl = cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-insert j (f j) (restrict f is))
- lemma-inner f (i ∷ is) j | no j≢i = begin
+ lemma-inner (i ∷ is) j with j ≟ i
+ lemma-inner (.j ∷ is) j | yes refl = cong (maybe′ id (lookup j (fromFunc f))) (lemma-lookupM-insert j (f j) (restrict f is))
+ lemma-inner (i ∷ is) j | no j≢i = begin
maybe′ id (lookup j (fromFunc f)) (lookupM j (insert i (f i) (restrict f is)))
≡⟨ cong (maybe′ id (lookup j (fromFunc f))) (sym (lemma-lookupM-insert-other j i (f i) (restrict f is) j≢i)) ⟩
maybe′ id (lookup j (fromFunc f)) (lookupM j (restrict f is))
- ≡⟨ lemma-inner f is j ⟩
+ ≡⟨ lemma-inner is j ⟩
f j ∎